Артикул: 1042760

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название:Методы решения задач линейного программирования
Графически и симплекс-методом решить задачу:
f(х) = x1 - 2x2 + 2x3 - x4 → extr
x1 + x3 - 3x4 = 3
2x1 + x2 + x4 = 8
x1, x2, x3, x4 ≥ 0

Описание:
Подробное решение в WORD - 60 страниц

Изображение предварительного просмотра:

Методы решения задач линейного программирования <br /> Графически и симплекс-методом решить задачу: <br /> f(х) = x<sub>1</sub> - 2x<sub>2</sub> + 2x<sub>3</sub> - x<sub>4</sub> → extr <br /> x<sub>1</sub> + x<sub>3</sub> - 3x<sub>4</sub> = 3 <br /> 2x<sub>1</sub> + x<sub>2</sub> + x<sub>4</sub> = 8 <br /> x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub> ≥ 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4.
Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Найти полуплоскость, определяемую неравенством
2x1 + 3x2 - 12 ≤ 0

Совхоз для кормления животных использует два вида корма. В дневном рационе животного должно содержаться не менее 6 единиц питательного вещества и не менее 12 единиц питательного вещества . Какое количество корма надо расходовать ежедневно на одного животного, чтобы затраты были минимальными? Использовать данные таблицы
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум и почему

Найти наибольшее значение функции L = 3x1 - 6x2 + 2x3 при ограничениях: 3x1 + 3x2 + 2x3 ≤ 6, x1 + 4x2 + 8x3 ≤ 8
Задача линейного программирования
Решить задачу многокритериальной оптимизации методом ограничений

Дать геометрическую интерпретацию следующих взаимно двойственных задач:
Исходная задача (I): найти неотрицательные значения (x1, x2) из условий x1 + 2x2 ≥ 4, x1 - x2 ≥ - 1 и минимизации линейной функции L = 3x1 + 2x2
Двойственная задача (I'): найти неотрицательные значения (y1, y2) из условий y1 + y2 ≤ 3, 2y1 - y2 ≤ 2 и максимизации линейной функции T = 4y1 - y2
Симплекс-метод (реферат)Максимизировать линейную форму L = -x4 + x5 при ограничениях : x1 + x4 - 2x5 = 1, x2 - 2x4 + x5 = 2, x3 + 3x4 + x5 = 3
Решение военно-логической задачи по распределению ударной группы авиационного подразделения
В авиационном подразделении имеется 40 вертолетов. Планируется удар полковым вылетом по 3-м групповым целям: скоплению танков, двум дивизионам самоходной артиллерии и подразделению мотопехоты на бронетранспортерах. Необходимо найти оптимальный вариант распределения вертолетов по объектам удара и оценить его эффективность по математическому ожиданию поражаемой силы, выраженной в единицах боевого потенциала.
Боевой потенциал ударной группы приведен в табл. 1. Боевые потенциалы групповых целей приведены в табл. 2.

Найти наибольшее значение функции L = x1 + 3x2 + 3x3 при значениях: x2 + x3 ≤ 3, x1 - x2 ≥ 0, x2 ≥ 1, 3x1 + x2 ≤ 15