Артикул: 1118485

Раздел:Технические дисциплины (76245 шт.) >
  Математика (28930 шт.) >
  Линейное программирование (413 шт.)

Название:Максимизировать линейную форму L = 4x5 + 2x6 при ограничениях: x1 + x5 + x6 = 12, x2 + 5x5 - x6 = 30, x3 + x5 - 2x6 = 6, 2x4 + 3x5 - 2x6 = 18, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥0

Изображение предварительного просмотра:

Максимизировать линейную форму L = 4x<sub>5</sub> + 2x<sub>6</sub> при ограничениях:  x<sub>1</sub> + x5<sub></sub> + x<sub>6</sub> = 12, x<sub>2</sub> + 5x<sub>5</sub> - x<sub>6</sub> = 30, x<sub>3</sub> + x<sub>5</sub> - 2x<sub>6</sub> = 6, 2x<sub>4</sub> + 3x<sub>5</sub> - 2x<sub>6</sub> = 18, x<sub>1</sub> ≥ 0, x<sub>2</sub> ≥ 0, x<sub>3</sub> ≥ 0, x<sub>4 </sub> ≥ 0, x<sub>5</sub> ≥ 0, x<sub>6</sub> ≥0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Провести моделирование и решить специальную задачу линейного программирования.
Компания, занимающаяся ремонтом автомобильных дорог, в следующем месяце будет проводить ремонтные работы на пяти участках автодорог. Песок на участки ремонтных работ может доставляться из трех карьеров, месячные объемы предложений по карьерам известны. Из планов производства ремонтных работ известны месячные объемы потребностей по участкам работ. Имеются экономические оценки транспортных затрат (в у. е.) на перевозку 1 тонны песка с карьеров на ремонтные участки.
Числовые данные для решения содержатся ниже в Матрице планирования.
Требуется:
1) Предложить план перевозок песка на участки ремонта автодорог, который обеспечивает минимальные совокупные транспортные издержки.
2) Что произойдет с оптимальным планом, если изменятся условия перевозок: а) появится запрет на перевозки от первого карьера до второго участка работ?; б) по этой коммуникации будет ограничен объем перевозок 3 тоннами?

Решение военно-логической задачи по распределению ударной группы авиационного подразделения
В авиационном подразделении имеется 40 вертолетов. Планируется удар полковым вылетом по 3-м групповым целям: скоплению танков, двум дивизионам самоходной артиллерии и подразделению мотопехоты на бронетранспортерах. Необходимо найти оптимальный вариант распределения вертолетов по объектам удара и оценить его эффективность по математическому ожиданию поражаемой силы, выраженной в единицах боевого потенциала.
Боевой потенциал ударной группы приведен в табл. 1. Боевые потенциалы групповых целей приведены в табл. 2.

Найти наименьшее значение линейной функции L = 7x1 + 5x2 на множестве неотрицательных решений системы уравнений
Найти полуплоскость, определяемую неравенством
2x1 + 3x2 - 12 ≤ 0

Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4.
Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Совхоз для кормления животных использует два вида корма. В дневном рационе животного должно содержаться не менее 6 единиц питательного вещества и не менее 12 единиц питательного вещества . Какое количество корма надо расходовать ежедневно на одного животного, чтобы затраты были минимальными? Использовать данные таблицы
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум и почему

Фирма производит товар двух видов в количествах x и y. Задана функция полных издержек C(x,y). Цены этих товаров на рынке равны P1 и P2. Определить, при каких объемах выпуска достигается максимальная прибыль, найти эту прибыль.
C(x,y) = 7x2 + 8xy + 3y2 + 90, P1 = 110, P2 = 70

Максимизировать линейную форму L = x2 + x3 при ограничениях: x1 - x2 + x3 = 1, x2 - 2x3 + x4 = 2
Составить экономико-математическую модель задачи об использовании сырья и решить ее графически.
Максимизировать линейную форму L = -x4 + x5 при ограничениях : x1 + x4 - 2x5 = 1, x2 - 2x4 + x5 = 2, x3 + 3x4 + x5 = 3