Артикул: 1116434

Раздел:Технические дисциплины (74173 шт.) >
  Математика (27178 шт.) >
  Линейное программирование (398 шт.)

Название:Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4.
Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Описание:
Подробное решение в WORD - 3 страницы

Изображение предварительного просмотра:

Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4. <br /> Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Необходимо решить задачу линейного программирования
Максимизировать линейную форму L = 2x1 + 2x2 при ограничениях: 3x1 - 2x2 ≥ - 6, 3x1 + x2 ≥ 3, x1 ≤ 3
Максимизировать линейную форму L = 4x5 + 2x6 при ограничениях: x1 + x5 + x6 = 12, x2 + 5x5 - x6 = 30, x3 + x5 - 2x6 = 6, 2x4 + 3x5 - 2x6 = 18, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥0
Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия I вида расходуется 2 кг металла, а изделия II вида - 4 кг. Составить план производства, обеспечивающий получение наибольшей прибыли от продажи изделий, если отпускная стоимость одного изделия I вида составляет - 3 руб., а изделия II вида - 2 руб., причем изделий I вида требуется изготовить не более 40, а изделий II вида - не более 20
Максимизировать линейную форму L = x2 + x3 при ограничениях: x1 - x2 + x3 = 1, x2 - 2x3 + x4 = 2
Минимизировать линейную функцию L = 12x1 + 4x2 при ограничениях: x1 + x2 ≥ 2, x1 ≥ 1/2, x2 ≤ 4, x1 - x2 ≤ 0
Предложить оптимальное управленческое решение в следующих типовых хозяйственных ситуациях.
Металлургическому заводу требуется уголь с содержанием фосфора не более 0,03% и с долей зольных примесей не более 3,25%. Завод закупает три сорта угля A, B, C с известным содержанием примесей. В какой пропорции нужно смешивать исходные продукты A, B, C чтобы смесь удовлетворяла ограничениям на содержание примесей и имела минимальную цену? Содержание примесей и цена исходных продуктов приведены в таблице

Составить экономико-математическую модель задачи об использовании сырья и решить ее графически.
Компания, занимающаяся ремонтом автомобильных дорог, в следующем месяце будет проводить ремонтные работы на пяти участках автодорог. Песок на участки ремонтных работ может доставляться из трех карьеров, месячные объемы предложений по карьерам известны. Из планов производства ремонтных работ известны месячные объемы потребностей по участкам работ. Имеются экономические оценки транспортных затрат (в у. е.) на перевозку 1 тонны песка с карьеров на ремонтные участки.
Числовые данные для решения содержатся ниже в Матрице планирования.
Требуется:
1) Предложить план перевозок песка на участки ремонта автодорог, который обеспечивает минимальные совокупные транспортные издержки.
2) Что произойдет с оптимальным планом, если изменятся условия перевозок: а) появится запрет на перевозки от первого карьера до второго участка работ?; б) по этой коммуникации будет ограничен объем перевозок 3 тоннами?

Найти наибольшее значение функции L = 3x1 - 6x2 + 2x3 при ограничениях: 3x1 + 3x2 + 2x3 ≤ 6, x1 + 4x2 + 8x3 ≤ 8