Артикул: 1010367

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название:Имеются следующие отчётные данные 25 заводов одной из отраслей промышленности.
Требуется с целью изучения зависимости между среднегодовой стоимостью основных производственных фондов и выпуском валовой продукции произвести группировку заводов по среднегодовой стоимости основных производственных фондов, образовав пять групп заводов с равными интервалами.
По каждой группе и совокупности заводов подсчитать:
1) число заводов;
2) среднегодовую стоимость основных производственных фондов – всего и в среднем на один завод;
3) стоимость валовой продукции – всего и в среднем на один завод;
4) размер валовой продукции на один рубль основных производственных фондов (фондоотдачу).
Результаты представьте в виде групповой таблицы. Напишите краткие выводы.

Изображение предварительного просмотра:

Имеются следующие отчётные данные 25 заводов одной из отраслей промышленности. <br /> Требуется с целью изучения зависимости между среднегодовой стоимостью основных производственных фондов и выпуском валовой продукции произвести группировку заводов по среднегодовой стоимости основных производственных фондов, образовав пять групп заводов с равными интервалами. <br /> По каждой группе и совокупности заводов подсчитать: <br /> 1) число заводов; <br /> 2) среднегодовую стоимость основных производственных фондов – всего и в среднем на один завод; <br /> 3) стоимость валовой продукции – всего и в среднем на один завод; <br /> 4) размер валовой продукции на один рубль основных производственных фондов (фондоотдачу). <br /> Результаты представьте в виде групповой таблицы. Напишите краткие выводы.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Совхоз для кормления животных использует два вида корма. В дневном рационе животного должно содержаться не менее 6 единиц питательного вещества и не менее 12 единиц питательного вещества . Какое количество корма надо расходовать ежедневно на одного животного, чтобы затраты были минимальными? Использовать данные таблицы
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум и почему

Решить задачу о назначениях по данной матрице стоимостей
Необходимо найти
F = 2x1 + 4x2 → max при
3x1 + 6x2 ≤ 12
2x1 - x2 ≥ -2
-x1 + 3x2 ≥0
x1 ≥ 0, x2 ≥ 0

Максимизировать линейную форму L = x2 + x3 при ограничениях: x1 - x2 + x3 = 1, x2 - 2x3 + x4 = 2
Максимизировать линейную форму L = 2x1 - x4 при следующей системе ограничений
Компания, занимающаяся ремонтом автомобильных дорог, в следующем месяце будет проводить ремонтные работы на пяти участках автодорог. Песок на участки ремонтных работ может доставляться из трех карьеров, месячные объемы предложений по карьерам известны. Из планов производства ремонтных работ известны месячные объемы потребностей по участкам работ. Имеются экономические оценки транспортных затрат (в у. е.) на перевозку 1 тонны песка с карьеров на ремонтные участки.
Числовые данные для решения содержатся ниже в Матрице планирования.
Требуется:
1) Предложить план перевозок песка на участки ремонта автодорог, который обеспечивает минимальные совокупные транспортные издержки.
2) Что произойдет с оптимальным планом, если изменятся условия перевозок: а) появится запрет на перевозки от первого карьера до второго участка работ?; б) по этой коммуникации будет ограничен объем перевозок 3 тоннами?

Найти наибольшее значение функции L = x1 + 3x2 + 3x3 при значениях: x2 + x3 ≤ 3, x1 - x2 ≥ 0, x2 ≥ 1, 3x1 + x2 ≤ 15
Найти наименьшее значение линейной функции L = 7x1 + 5x2 на множестве неотрицательных решений системы уравнений
Задача линейного программирования
Решить задачу многокритериальной оптимизации методом ограничений

Построить график функции спроса Q=QD(P) и предложения Q=QS(P) и найдите координаты точки равновесия, если QD(P) = -4/3P + 4, QS(P) = P + 2