Артикул: 1118475

Раздел:Технические дисциплины (76245 шт.) >
  Математика (28930 шт.) >
  Линейное программирование (413 шт.)

Название:Максимизировать линейную форму L = 2x1 + 2x2 при ограничениях: 3x1 - 2x2 ≥ - 6, 3x1 + x2 ≥ 3, x1 ≤ 3

Изображение предварительного просмотра:

Максимизировать линейную форму L = 2x<sub>1</sub> + 2x<sub>2</sub> при ограничениях:  3x<sub>1</sub> - 2x<sub>2</sub> ≥ - 6, 3x<sub>1</sub> + x<sub>2</sub> ≥ 3, x<sub>1</sub> ≤ 3

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Симплекс-метод (реферат)Компания, занимающаяся ремонтом автомобильных дорог, в следующем месяце будет проводить ремонтные работы на пяти участках автодорог. Песок на участки ремонтных работ может доставляться из трех карьеров, месячные объемы предложений по карьерам известны. Из планов производства ремонтных работ известны месячные объемы потребностей по участкам работ. Имеются экономические оценки транспортных затрат (в у. е.) на перевозку 1 тонны песка с карьеров на ремонтные участки.
Числовые данные для решения содержатся ниже в Матрице планирования.
Требуется:
1) Предложить план перевозок песка на участки ремонта автодорог, который обеспечивает минимальные совокупные транспортные издержки.
2) Что произойдет с оптимальным планом, если изменятся условия перевозок: а) появится запрет на перевозки от первого карьера до второго участка работ?; б) по этой коммуникации будет ограничен объем перевозок 3 тоннами?

Решить графически данную задачу линейного программирования
Максимизировать линейную форму L = 4x5 + 2x6 при ограничениях: x1 + x5 + x6 = 12, x2 + 5x5 - x6 = 30, x3 + x5 - 2x6 = 6, 2x4 + 3x5 - 2x6 = 18, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥0
Найти наибольшее значение функции L = 3x1 - 6x2 + 2x3 при ограничениях: 3x1 + 3x2 + 2x3 ≤ 6, x1 + 4x2 + 8x3 ≤ 8
Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится по отдельной технологической линии. Суточный объем первой линии – A изделий, второй линии – B изделий. На радиоприемник первой модели расходуется C однотипных элементов электронных схем, на радиоприемник второй модели – D таких же элементов. Максимальный суточный запас используемых элементов равен E единиц. Прибыли от реализации одного радиоприемника первой и второй моделей равны Q и P ед. соответственно. Определите оптимальные суточные объемы производства первой и второй моделей на основе графического решения задачи. Провести анализ на чувствительность
Вариант 9
A=75, C=10, E=680, Q=15, B=65, D=6, P=10.
Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4.
Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Необходимо найти
F = 2x1 + 4x2 → max при
3x1 + 6x2 ≤ 12
2x1 - x2 ≥ -2
-x1 + 3x2 ≥0
x1 ≥ 0, x2 ≥ 0

Необходимо решить задачу линейного программирования
Задача линейного программирования
Решить задачу многокритериальной оптимизации методом ограничений