Найдено 30843 работ в категории: Технические дисциплины >Математика
Артикул №1126719
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Дисперсия каждой из 2500 независимых СВ не превышает 5. Оценить вероятность того, что отклонение среднего арифметического этих случайных величин от среднего арифметического их математических ожиданий не превысит 0,4.


Артикул №1126718
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Вероятность того, что абсолютная величина отклонения средней арифметической случайных величин от средней арифметической их математических ожиданий не превышает 0,5, равна 0,8. Дисперсия каждой независимой случайной величины не превышает 7. Найти число таких случайных величин


Артикул №1126717
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется меньше двух


Артикул №1126716
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Генератор обеспечивает выходное напряжение, которое может отклоняться от номинального на значение, не превышающее 1 В, с вероятностью 0,95. Какие значения дисперсии выходного напряжения можно ожидать?


Артикул №1126715
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
В 1600 испытаниях Бернулли вероятность успеха в каждом испытании равна 0,3. С помощью неравенства Чебышева оценить вероятность того, что разница между числом успехов в этих испытаниях и средним числом успехов будет меньше 50


Артикул №1126714
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 19.06.2019)
Средняя температура воздуха в июле в данной местности 20?С. Оценить вероятность того, что в июле следующего года средняя температура воздуха будет:
а) не более 15°С;
б) более 20°С.



Артикул №1126713
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Количество потребляемой за сутки электроэнергии предприятием является случайной величиной с математическим ожиданием 6 мегаватт при среднем квадратическом отклонении 1,5 мегаватта. Оценить вероятность того, что в ближайшие сутки потребление электроэнергии окажется более 12 мегаватт


Артикул №1126712
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор: а) превысит 400; б) будет не более 500


Артикул №1126711
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Длительность телефонного разговора подчиняется показательному закону. Найти среднюю длительность разговора, если вероятность того, что разговор продлится более 5 минут, равна 0,4


Артикул №1126710
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Предполагая, что случайное время обслуживания абонента службой «09» распределено по показательному закону и средняя продолжительность обслуживания составляет 1,5 минуты, найдите вероятность того, что абонент будет обслужен более, чем за 2 минуты


Артикул №1126709
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Установлено, что время ремонта телевизоров есть случайная величина X, распределенная по показательному закону с параметром λ=1/3 (1/день). Определить вероятность того, что на ремонт телевизора потребуется не менее 5 дней.


Артикул №1126708
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Среднее время безотказной работы прибора равно 80 часов. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:
а) выражение его плотности вероятности и функции распределения;
б) вероятность того, что в течение 100 часов прибор не выйдет из строя



Артикул №1126707
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
В здании областной администрации случайное время ожидания лифта равномерно распределено в диапазоне от 0 до 3 минут. Найти а) плотность распределения времени ожидания, б) вероятность ожидания лифта более чем 2 минуты, в) вероятность того, что лифт прибудет в течение первых 15 секунд, г) среднее время ожидания лифта и дисперсию времени ожидания


Артикул №1126706
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка: а) меньшая 0,04; б) большая 0,05.


Артикул №1126705
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Телефонный звонок должен последовать от 10 ч до 10 ч 20 мин. Какова вероятность того, что звонок произойдет в последние 10 мин указанного промежутка, если момент звонка случаен?


Артикул №1126704
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Автобусы идут с интервалом 5 минут. Полагая, что случайная величина ξ - время ожидания автобуса на остановке - распределена равномерно на указанном интервале, найти среднее время ожидания и среднеквадратическое уклонение времени ожидания


Артикул №1126703
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Плотность распределения вероятностей нормальной случайной величины X имеет вид f(x)=γe−x2+6x+3. Требуется найти:
А) неизвестный параметр γ,
Б) математическое ожидание M[X] и дисперсию D[X],
В) вероятность попадания случайной величины X в интервал (3, 4),
Г) вероятность выполнения неравенства |X−M[X]|<0.2.



Артикул №1126702
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Заданы функция плотности нормального распределения f(x)=Ae−9(x−0.5)2/8 и интервал (0,3;1,9).
Требуется:
1) найти математическое ожидание m
2) найти среднее квадратическое отклонение σ и дисперсию D
3) найти неизвестный коэффициент A
4) найти вероятность попадания случайной величины в заданный интервал
5) построить график функции плотности и на нём отметить площадь, равную найденной вероятности



Артикул №1126701
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
С.в. Y распределена по нормальному закону с математическим ожиданием, равным 2, и средним квадратическим отклонением, равным 1. Пусть X=2Y+5. Найдите вероятности P(X>10), P(2


Артикул №1126700
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 26.06.2019)
Случайная величина X распределена по нормальному закону N[−1,2].
Вычислить
1) вероятность того, что X∈[−6,1]
2) вероятность того, что при пяти испытаниях три раза X∈[M,M+D]



    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике
    Не нашли нужной задачи или варианта? Вы всегда можете воспользоваться быстрым заказом решения.

    Быстрый заказ решения

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 150000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях:
    ИНН421700235331 ОГРНИП308774632500263