Артикул №1113121
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.
x = 75,10; n = 169; σ = 13

Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.  <br /> x = 75,10; n = 169; σ = 13


Артикул №1113120
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.
x = 75,12; n = 121; σ = 11

Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ. <br /> x = 75,12; n = 121; σ = 11


Артикул №1113119
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.
x = 75,13; n = 100; σ = 10

Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.<br />  x = 75,13; n = 100; σ = 10


Артикул №1113118
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.
x = 75,14; n = 81; σ = 9

Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю  X , объем выборки n и среднее квадратическое отклонение σ. <br />  x = 75,14; n = 81; σ = 9


Артикул №1113108
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=3, σ=2, α=3, β=10.

Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)<br /> a=3, σ=2, α=3, β=10.


Артикул №1113107
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=4, σ=5, α=2, β=11.

Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β) <br /> a=4, σ=5, α=2, β=11.


Артикул №1113106
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=5, σ=1, α=1, β=12.

Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β) <br /> a=5, σ=1, α=1, β=12.


Артикул №1113105
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=6, σ=3, α=2, β=11.

Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β) <br /> a=6, σ=3, α=2, β=11.


Артикул №1113104
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=7, σ=2, α=3, β=10.

Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β) <br /> a=7, σ=2, α=3, β=10.


Артикул №1113103
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=8, σ=1, α=4, β=9.

Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β) <br /> a=8, σ=1, α=4, β=9.


Артикул №1113102
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=10, σ=4, α=2, β=13.

Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β) <br /> a=10, σ=4, α=2, β=13.


Артикул №1113101
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Дискретная случайная величина Х может принимать только два значения: х1 и х2, причем х1 меньше x2. Известны вероятность р1 возможного значения х1, математическое ожидание М(х) и дисперсия D(x). Найти закон распределения этой случайной величины.
p1=0,1; M(x)=3,9; D(x)=0,09

Дискретная случайная величина Х может принимать только два значения: х<sub>1</sub> и х<sub>2</sub>, причем х<sub>1</sub> меньше x<sub>2</sub>. Известны вероятность р1 возможного значения х<sub>1</sub>, математическое ожидание М(х) и дисперсия D(x). Найти закон распределения этой случайной величины. <br />  p<sub>1</sub>=0,1; M(x)=3,9; D(x)=0,09


Артикул №1113100
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Два брата входят в состав двух спортивных команд, состоящих из 12 человек каждая. В двух урнах имеется по 12 билетов с номерами от 1 до 12. Члены кождой команды вынимают наудачу по одному билету из определённой урны (без возвращения). Найти вероятность того, что оба брата вытащат билет номер 6.


Артикул №1113099
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит 5 раз.


Артикул №1113098
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Для сигнализации об аварии установлены три независимо работающих устройства. Вероятность того, что при аварии сработает первое устройство равна 0,9, второе - 0,95, третье - 0,85. Найти вероятность того, что при аварии сработает: а) только одно устройство; б) только два устройства; в) все три устройства.


Артикул №1113097
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 11.10.2018)
Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,7. Найти вероятность того, что в 1600 испытаниях событие наступит 900 раз.


Артикул №1112684
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 06.10.2018)
Случайная величина имеет биномиальное распределение с параметрами n=500, p=0.01
Найти:
а) Mξ Dξ
b) P {ξ ≥3}
c) P {ξ ≤2}
Последнюю вероятность оценить по соответствующей приближенной формуле



Артикул №1111124
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 24.09.2018)
Два студента договорились встретиться. Один ждет другого не более 10 минут. Найти вероятность того что студенты встретятся.


Артикул №1106434
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 15.08.2018)
Случайная величина распределена по нормальному закону N(a,σ) Вычислить вероятности событий ξ < x0, ξ ≥ x0, x1 ≤ ξ < x2, |ξ-a|< tσ, для t = t1, t2, t3
Найти интервалы, соответствующие вероятностям Р1 = 07, Р2 = 0,8, Р3 = 0,9 отклонения случайной величины от ее среднего значения.

Случайная величина распределена по нормальному закону N(a,σ)  Вычислить вероятности событий  ξ < x<sub>0</sub>, ξ ≥ x<sub>0</sub>, x<sub>1</sub> ≤ ξ < x<sub>2</sub>, |ξ-a|< tσ, для t = t<sub>1</sub>, t<sub>2</sub>, t<sub>3</sub> <br /> Найти интервалы, соответствующие вероятностям Р<sub>1</sub> = 07, Р<sub>2</sub> = 0,8, Р<sub>3</sub> = 0,9 отклонения случайной величины от ее среднего значения.


Артикул №1106433
Технические дисциплины >
  Математика >
  Теория вероятности >
  Теория вероятности и математическая статистика (ТВиМС)

(Добавлено: 15.08.2018)
Дана плотность распределения случайной величины ξ. Определить ее функцию распределения, построить графики плотности распределения и функции распределения, вычислить математическое ожидание, дисперсию, стандартное отклонение и вероятности событий ξ < x0, ξ ≥ x0, x1 < ξ ≤ x2
Дана плотность распределения случайной величины ξ. Определить ее функцию распределения, построить графики плотности распределения и функции распределения, вычислить математическое ожидание, дисперсию, стандартное отклонение и вероятности событий ξ < x<sub>0</sub>, ξ ≥ x<sub>0</sub>, x<sub>1</sub> < ξ ≤  x<sub>2</sub>


    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике
    Не нашли нужной задачи или варианта? Вы всегда можете воспользоваться быстрым заказом решения.

    Быстрый заказ решения

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 150000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях: