Артикул: 1165076

Раздел:Технические дисциплины (108578 шт.) >
  Теоретические основы электротехники (ТОЭ) (23179 шт.) >
  Переходные процессы (3256 шт.)

Название или условие:
Задача 64. Определить начальное значение ЭДС самоиндукции еL , возникающей в катушке при размыкании ключа (рис. 1).

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача 64.</b> Определить начальное значение ЭДС самоиндукции еL , возникающей в катушке при размыкании ключа (рис. 1).

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Проанализировать схему. На основании анализа построить приближенно график i2(t). Дать пояснения.
Переходные процессы в линейных электрических цепях (Курсовая работа)
ЗАДАЧА 1.1 Классический метод анализа переходных процессов
ЗАДАЧА 1.2 Операторный и качественный анализ переходных процессов
Данные 8 Схема 7

Е = 10 В, L = 1 мГн.
R1 = 10 Ом, R2 = 10 Ом, R3 = 30 Ом,
Определить ic (поскольку конденсатор в задаче убран, будем определять ток источника)

Определить независимые начальные условия
В последовательном колебательном контуре в начальный момент времени конденсатор разряжен, ток через катушку индуктивности равен 6 мА. Определите начальные условия для решения дифференциального уравнения, описывающего процесс собственных колебаний в контуре и составленного относительно напряжения на катушке индуктивности. Параметры колебательного контура: R = 10 Ом, L = 3 мГн, C = 9 нФ.В простом параллельном колебательном контуре в начальный момент времени конденсатор заряжен до напряжения 2 В, ток через катушку индуктивности отсутствует. Определите начальные условия для решения дифференциального уравнения, описывающего процесс собственных колебаний в контуре и составленного относительно напряжения на конденсаторе. Параметры колебательного контура: R = 25 кОм, L = 1 мГн, C = 9 нФ.
Ко входу последовательной RL-цепи подключен источник постоянной ЭДС. Параметры элементов цепи: E = 5 В, R = 2 кОм, L = 5 мГн. В нулевой момент времени источник отключается (заменяестя внутренним сопротивлением).
Составьте дифференциальное уравнение относительно напряжения на катушке индуктивности.
Определите начальное условие для решения дифференциального уравнения.
ЗАДАЧА 13. Определить ток в цепи (рис. 1) операторным методом и с помощью интеграла Дюамеля. Построить график i(t).
Вариант 20
Величины R и ωL (при ω = 314 1/с) указаны в таблице вариантов задачи 12. Дано: ωL=0,75 Ом; ωL/R=3;

В простом параллельном колебательном контуре в начальный момент времени конденсатор заряжен до напряжения 5 В, ток через катушку индуктивности отсутствует. Определите начальные условия для решения дифференциального уравнения, описывающего процесс собственных колебаний в контуре и составленного относительно тока через конденсатор. Параметры колебательного контура: R = 80 кОм, L = 4 мГн, C = 1 нФ.Для схемы определить начальные значения отмеченных на рисунке величин, а также значения их производных в момент t=0