Артикул: 1157880

Раздел:Технические дисциплины (101855 шт.) >
  Теоретические основы электротехники (ТОЭ) (18011 шт.) >
  Переходные процессы (2421 шт.)

Название или условие:
Задание №2
Расчет переходных процессов в линейных электрических цепях
Вариант 100
Дано: J = 5,5А, α = 90°, ω = 1000 1/с, R = 10 Ом, L = 0.02 Гн, C = 200 мкФ.

Описание:
I. Для заданной схемы при коммутации ключа K1 в момент времени t=0, когда ключ K2 еще не сработал, выполнить следующее:
1. При постоянном источнике ЭДС e(t)=E или тока J(t)=J определить ток i(t) или напряжение uJ(t) :
а) классическим методом;
б) операторным методом;
построить график зависимости тока i(t) или напряжения uJ(t).
2. При гармоническом источнике ЭДС e(t)=√2·E·sin(ωt+α) или тока J(t)=√2·J·sin(ωt+α) определить ток i(t) или напряжение uJ(t):
а) классическим методом;
б) комбинированным (операторно-классическим) методом;
на интервале времени 0≤t≤2π/ω построить график зависимости тока i(t) или напряжения uJ(t) .
3. При импульсном источнике ЭДС e(t)=E·e2pt или тока J(t)=J·e2pt и нулевых начальных условиях определить интегралом Дюамеля ток i(t) или напряжение uJ(t), построить их график зависимости (p – корень характеристического уравнения из п. 1, а).
II. Для заданной схемы с постоянным источником ЭДС e(t)=E или тока J(t)=J при коммутации ключа K2 в момент времени t=0, когда ключ K1 давно уже сработал, определить ток i(t) или напряжение uJ(t):
а) классическим методом;
б) операторным методом;
в) методом переменных состояния;
построить график зависимости тока i(t) или напряжения uJ(t).
III. Проанализировать методы расчета, результаты вычислений, графики зависимостей и сформулировать выводы по работе.

Подробное решение в WORD

Поисковые тэги: Операторный метод, Классический метод, Интеграл Дюамеля, Метод переменных состояния

Изображение предварительного просмотра:

<b>Задание №2 </b><br />Расчет переходных процессов в линейных электрических цепях<br /><b>Вариант 100</b><br />Дано: J = 5,5А, α = 90°, ω = 1000 1/с, R = 10 Ом, L = 0.02 Гн, C = 200 мкФ.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В РАЗВЕТВЛЕННОЙ ЦЕПИ
1. Рассчитать переходный процесс классическим методом:
− определить законы изменения токов и напряжений после коммутации
− вычислить 10 − 12 значений токов и напряжений
− построить кривые изменения токов и напряжений в функции времени по полученным данным
2. Заменить источник постоянного напряжения источником синусоидальной ЭДС − e = Emsinωt . ( Em = E ) . Определить закон изменения входного тока классическим методом.
3. Определить законы изменения тока, протекающего по катушке, и напряжения на конденсаторе от источника постоянного напряжения операторным методом. Сравнить результаты расчета, полученные классическим и операторным методом.

Переходные процессы в линейных электрических цепях (Курсовая работа)
ЗАДАЧА 1.1 Классический метод анализа переходных процессов
ЗАДАЧА 1.2 Операторный и качественный анализ переходных процессов
Данные 8 Схема 7

Построить приближенно график i(t).
Е = 15(0-) В, E(0+)=10 B,
L = 1 мГн.
R1 = 10 Ом, R2 = 10 Ом, R3 = 30 Ом,
Определить iL(t)

Определить корни характеристического уравнения при подключении емкости, заряженной до напряжения 10 В, если R1 = 30 Ом; R2 = 10 Ом;
L = 0.1 Гн; C = 10-3 Ф;
J(t)=4.71sin(100t+38.13°) A

По какому закону будут изменяться ток и напряжения на R, C и L при переключении ключа из положения a в положение b?
Указать неправильный ответ.

Задача 1.
Для схемы на рис. 1 определить начальные параметры токов в катушке и резисторе, напряжение на конденсаторе и их производные (iL(0), iR(0), uC(0) diL/dt, diR/dt, duC/dt), если R = 40 Ом, С = 40 мкФ, L = 60 мГн, e(t)=100•sin(314t+30°) В.

Определить принужденную составляющую тока в ветви с индуктивным элементом, полагая e(t)=100 В; R1 = R4 = 10 Ом; R2 = R = 20 Ом; L = 0.05 Гн; C = 250 мкФ. Ключ замыкается.
В последовательном колебательном контуре в начальный момент времени конденсатор разряжен, ток через катушку индуктивности равен 3 мА. Определите начальные условия для решения дифференциального уравнения, описывающего процесс собственных колебаний в контуре и составленного относительно тока в контуре. Параметры колебательного контура: R = 5 Ом, L = 1 мГн, C = 4 нФ.4. Расчет переходных процессов классическим методом
4.1. Определить и построить переходную и импульсную характеристики цепи для входного тока и выходного напряжения. Провести моделирование в Мультисим, по результатам которого получить скриншоты экранов виртуального осциллографа для переходных функций, и сравнить результаты с расчётными.
4.2. Рассчитать и построить графики изменения тока iвх и напряжения uвых четырёхполюсника при подключении его к клеммам с напряжением u4(t) в момент времени, когда входное напряжение u3(t)=0, du3/dt>0 (это условие будет выполнено при равенстве аргумента входного напряжения (ωt+ψu3)=2kπ,где k=0,1,2,3), с учетом запаса энергии в реактивных элементах схемы от предыдущего режима работы на интервале t [0+, 2.5T], где T - период изменения напряжения u4