Артикул: 1150318

Раздел:Технические дисциплины (95578 шт.) >
  Математика (32653 шт.) >
  Линейная алгебра (1786 шт.)

Название или условие:
Решить систему линейных уравнений методом Гаусса

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Решить систему линейных уравнений методом Гаусса

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти все целочисленные решения уравнения axk – byk = 1 или доказать, что их нет
1) Пусть G ⊆ Sn подгруппа, порожденная перестановками α и β. Найти . Коммутативна ли она? Какой из известных вам групп она изоморфна?
2) Является ли подгруппа группы G, порожденная элементом α, нормальной подгруппой? Если да, найти фактор – группу по ней.
3) То же задание для подгруппы, порожденной элементом β

Найти tgα, если
6. Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей.
Вариант 7

Перечислить возможно большее число неизоморфных групп порядка N1 и N2. Доказать, что перечисленные группы попарно не изоморфны.
Решите неравенство
Найти в Zn все решения уравнения axk + b = c или доказать, что их нет
Семья из трех человек едет из Ростова -на-Дону в Гагры. Можно ехать поездом, а можно - на своей машине. Билет на поезд стоит 650 рублей на одного человека. Автомобиль расходует 9 литров бензина на 100 км, а цена бензина равна 22 рубля за литр. Расстояние между городами по шоссе 700 км. Сколько рублей придется заплатить за наиболее дешевую поездку на троих?
3)
Упростите выражение, преобразовав его в произведение:

Систему линейных алгебраических уравнений решить методом Гаусса
x - 3y - z = 6
- 2x + 2y + 3z = 2
- x + y + 2z = 2