Артикул: 1147496

Раздел:Технические дисциплины (93253 шт.) >
  Теоретические основы электротехники (ТОЭ) (11423 шт.) >
  Переходные процессы (1359 шт.)

Название или условие:
11.
Выберете вид свободной составляющей для цепи первого порядка
1) iCB=Ae-δ tsin(ω0t+v)
2) iCB=A1ep1t+A2ep2t
3) iCB=(A1+A2t)ept
4) iCB=Aept

Описание:
Ответ на вопрос теста

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Проанализировать схему. На основании анализа построить приближенно график U2(t)
Определить корни характеристического уравнения при подключении емкости, заряженной до напряжения 10 В, если R1 = 30 Ом; R2 = 10 Ом;
L = 0.1 Гн; C = 10-3 Ф;
J(t)=4.71sin(100t+38.13°) A

Для схемы определить начальные значения отмеченных на рисунке величин, а также значения их производных в момент t=0
Ко входу последовательной RL-цепи подключен источник постоянной ЭДС. Параметры элементов цепи: E = 5 В, R = 2 кОм, L = 5 мГн. В нулевой момент времени источник отключается (заменяестя внутренним сопротивлением).
Составьте дифференциальное уравнение относительно напряжения на катушке индуктивности.
Определите начальное условие для решения дифференциального уравнения.
РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В РАЗВЕТВЛЕННОЙ ЦЕПИ
1. Рассчитать переходный процесс классическим методом:
− определить законы изменения токов и напряжений после коммутации
− вычислить 10 − 12 значений токов и напряжений
− построить кривые изменения токов и напряжений в функции времени по полученным данным
2. Заменить источник постоянного напряжения источником синусоидальной ЭДС − e = Emsinωt . ( Em = E ) . Определить закон изменения входного тока классическим методом.
3. Определить законы изменения тока, протекающего по катушке, и напряжения на конденсаторе от источника постоянного напряжения операторным методом. Сравнить результаты расчета, полученные классическим и операторным методом.

Вариант 28
Схема цепи приведена на рисунке. На входе цепи действует напряжение u(t)=Ue-βtσ(t). Выходным сигналом является напряжение на катушке L2. Найдите выходной сигнал двумя способам – операторным методом и используя интеграл Дюамеля. Считайте U, β, L1, L2 и R – известными величинами (L1=L2). Постройте, качественно, графики входного и выходного сигналов в одном масштабе.

Найти коэффициент затухания тока для следующей схемы с параметрами U = 10 В, R = 4 Ом, L = 20 мГн, С = 100 мкФ. Ответ округлить до целых
В простом параллельном колебательном контуре в начальный момент времени конденсатор заряжен до напряжения 2 В, ток через катушку индуктивности отсутствует. Определите начальные условия для решения дифференциального уравнения, описывающего процесс собственных колебаний в контуре и составленного относительно напряжения на конденсаторе. Параметры колебательного контура: R = 25 кОм, L = 1 мГн, C = 9 нФ.
ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЦЕПЯХ С СОСРЕДОТОЧЕННЫМИ ПАРАМЕТРАМИ
Цепь содержит источники постоянного напряжения и постоянного тока Е и J, а также источники гармонического напряжения e(t)=Emsin(ωt+φ) и тока J(t)=Jmsin(ωt+φ) c угловой частотой ω = 1000 рад/с.
Предполагается, что до замыкания (или размыкания) первого ключа цепь находится в установившемся режиме.
Необходимо:
1. Рассчитать классическим методом ток i1(t) на трех этапах, соответствующих последовательному замыканию (или размыканию) трех ключей.
2. Рассчитать тот же ток i1(t) операторным методом. Для первой и второй коммутации воспользоваться операторным методом для полных составляющих тока, для третьей коммутации применить операторный метод для свободной составляющей тока.
3. Построить график зависимости i(t) для трех этапов.
Вариант 8

Е = 10 В, L = 1 мГн.
R1 = 10 Ом, R2 = 10 Ом, R3 = 30 Ом,
Определить ic (поскольку конденсатор в задаче убран, будем определять ток источника)