Артикул: 1131041

Раздел:Технические дисциплины (81026 шт.) >
  Математика (30884 шт.) >
  Линейное программирование (416 шт.)

Название или условие:
Симплекс-метод (реферат)

Описание:
ВВЕДЕНИЕ
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РЕШЕНИЯ ЛИНЕЙНЫХ МОДЕЛЕЙ СИМПЛЕКС-МЕТОДОМ
2. ПЕРЕХОД ОТ ОДНОЙ К-МАТРИЦЫ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ К ДРУГОЙ К-МАТРИЦЕ
3. АЛГОРИТМ СИМПЛЕКС-МЕТОДА
4. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ СИМПЛЕКС-МЕТОДА ДЛЯ РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
ЗАКЛЮЧЕНИЕ

Всего 16 страниц

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

В двух пунктах отправления А и В находится соответственно 150 и 90 т горючего. В пункты 1,2,3 требуется доставить соответственно 60,70 и 110 т горючего. Стоимости перевозки тонны горючего из пункта А в пункты 1,2,3 составляют соответственно 6, 10 и 4 руб., а из пункта В - 12,2 и 8 руб. Составить оптимальный план перевозок горючего так, чтобы общая сумма транспортных расходов была наименьшей. Дать геометрическую интерпретацию следующих взаимно двойственных задач:
Исходная задача (I): найти неотрицательные значения (x1, x2) из условий x1 + 2x2 ≥ 4, x1 - x2 ≥ - 1 и минимизации линейной функции L = 3x1 + 2x2
Двойственная задача (I'): найти неотрицательные значения (y1, y2) из условий y1 + y2 ≤ 3, 2y1 - y2 ≤ 2 и максимизации линейной функции T = 4y1 - y2
Минимизировать линейную функцию L = 12x1 + 4x2 при ограничениях: x1 + x2 ≥ 2, x1 ≥ 1/2, x2 ≤ 4, x1 - x2 ≤ 0
Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия I вида расходуется 2 кг металла, а изделия II вида - 4 кг. Составить план производства, обеспечивающий получение наибольшей прибыли от продажи изделий, если отпускная стоимость одного изделия I вида составляет - 3 руб., а изделия II вида - 2 руб., причем изделий I вида требуется изготовить не более 40, а изделий II вида - не более 20
В обработку поступили две партии досок для изготовления комплектов из трех деталей (треугольные каркасы настилов на стройплощадку), причем первая партия содержит 52 доски длиной по 6,5 м каждая, вторая содержит 200 досок длиной по 4 м каждая. Каждый комплект состоит из двух деталей по 2 м каждая и одной детали в 1,25 м.
Ставится задача поиска рационального варианта раскроя поступившего в обработку материала.
Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4.
Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится по отдельной технологической линии. Суточный объем первой линии – A изделий, второй линии – B изделий. На радиоприемник первой модели расходуется C однотипных элементов электронных схем, на радиоприемник второй модели – D таких же элементов. Максимальный суточный запас используемых элементов равен E единиц. Прибыли от реализации одного радиоприемника первой и второй моделей равны Q и P ед. соответственно. Определите оптимальные суточные объемы производства первой и второй моделей на основе графического решения задачи. Провести анализ на чувствительность
Вариант 9
A=75, C=10, E=680, Q=15, B=65, D=6, P=10.
Найти наименьшее значение линейной функции L = 7x1 + 5x2 на множестве неотрицательных решений системы уравнений
Максимизировать линейную форму L = -x4 + x5 при ограничениях : x1 + x4 - 2x5 = 1, x2 - 2x4 + x5 = 2, x3 + 3x4 + x5 = 3
Найти оптимальный план транспортной задачи