Артикул: 1118482

Раздел:Технические дисциплины (76245 шт.) >
  Математика (28930 шт.) >
  Линейное программирование (413 шт.)

Название или условие:
Максимизировать линейную форму L = 2x1 - x4 при следующей системе ограничений

Изображение предварительного просмотра:

Максимизировать линейную форму L = 2x<sub>1</sub> - x<sub>4</sub> при следующей системе ограничений

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Предложить оптимальное управленческое решение в следующих типовых хозяйственных ситуациях.
Металлургическому заводу требуется уголь с содержанием фосфора не более 0,03% и с долей зольных примесей не более 3,25%. Завод закупает три сорта угля A, B, C с известным содержанием примесей. В какой пропорции нужно смешивать исходные продукты A, B, C чтобы смесь удовлетворяла ограничениям на содержание примесей и имела минимальную цену? Содержание примесей и цена исходных продуктов приведены в таблице

Составить экономико-математическую модель задачи об использовании сырья и решить ее графически.
Решить графически данную задачу линейного программирования
Найти наибольшее значение функции L = 3x1 - 6x2 + 2x3 при ограничениях: 3x1 + 3x2 + 2x3 ≤ 6, x1 + 4x2 + 8x3 ≤ 8
Найти полуплоскость, определяемую неравенством
2x1 + 3x2 - 12 ≤ 0

Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится по отдельной технологической линии. Суточный объем первой линии – A изделий, второй линии – B изделий. На радиоприемник первой модели расходуется C однотипных элементов электронных схем, на радиоприемник второй модели – D таких же элементов. Максимальный суточный запас используемых элементов равен E единиц. Прибыли от реализации одного радиоприемника первой и второй моделей равны Q и P ед. соответственно. Определите оптимальные суточные объемы производства первой и второй моделей на основе графического решения задачи. Провести анализ на чувствительность
Вариант 9
A=75, C=10, E=680, Q=15, B=65, D=6, P=10.
Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4.
Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Решение военно-логической задачи по распределению ударной группы авиационного подразделения
В авиационном подразделении имеется 40 вертолетов. Планируется удар полковым вылетом по 3-м групповым целям: скоплению танков, двум дивизионам самоходной артиллерии и подразделению мотопехоты на бронетранспортерах. Необходимо найти оптимальный вариант распределения вертолетов по объектам удара и оценить его эффективность по математическому ожиданию поражаемой силы, выраженной в единицах боевого потенциала.
Боевой потенциал ударной группы приведен в табл. 1. Боевые потенциалы групповых целей приведены в табл. 2.

Минимизировать линейную функцию L = 12x1 + 4x2 при ограничениях: x1 + x2 ≥ 2, x1 ≥ 1/2, x2 ≤ 4, x1 - x2 ≤ 0
Дать геометрическую интерпретацию следующих взаимно двойственных задач:
Исходная задача (I): найти неотрицательные значения (x1, x2) из условий x1 + 2x2 ≥ 4, x1 - x2 ≥ - 1 и минимизации линейной функции L = 3x1 + 2x2
Двойственная задача (I'): найти неотрицательные значения (y1, y2) из условий y1 + y2 ≤ 3, 2y1 - y2 ≤ 2 и максимизации линейной функции T = 4y1 - y2