Задача 6. Изменить порядок интегрирования в двойном интеграле. Сделать чертёж области интегрирования. Вариант 5
 | Вычислить криволинейный интеграл первого рода по указанной кривой L
 |
Найти моменты инерции однородных дуг L плотности ρ L={(x,y):x=acost, y=asint, 0≤t≤α } а) Относительно оси OX б) Относительно оси OY
 | Изменить порядок интегрирования. Область интегрирования изобразить на чертеже
 |
Вычислить двойной интеграл, если область G – единичный круг с центром в начале координат. Интеграл:
 | Вычислить тройной интеграл по прямоугольной области
 |
Вычислить криволинейный интеграл I рода, если L – отрезок прямой от точки А до точки В. f(x;y)=x2y+2xy; A(0;0), B(3;6)
 | Найти координаты центра масс дуги однородной кривой L L={(x,y):x2/3+y2/3=a2/3,y≥0}
 |
Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
 | Вычислить криволинейный интеграл II рода , если L – отрезок прямой, соединяющей точки А и В. L: A(0;0), B(3;6); y=3x
 |