Артикул: 1118510

Раздел:Технические дисциплины (76248 шт.) >
  Математика (28933 шт.) >
  Математический анализ (19726 шт.) >
  Кратные и криволинейные интегралы (1399 шт.)

Название или условие:
Вычислить интеграл, где область Т определяется неравенствами
0 ≤ x ≤ 1/2, x ≤ y ≤ 2x, 0 ≤ z ≤ √(1 - x2 - y2)

Изображение предварительного просмотра:

Вычислить интеграл, где область Т определяется неравенствами <br /> 0 ≤ x ≤ 1/2, x ≤ y ≤ 2x, 0 ≤ z ≤ √(1 - x<sup>2</sup> - y<sup>2</sup>)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти момент инерции прямого кругового цилиндра радиуса R и высотой H относительно оси Oz, если плотность ρ постояннаВычислить интеграл:
S xyzdS,где S-часть конуса z2=2xy, z≥0, лежащая внутри цилиндра x2+y2=a2

Найти площадь цилиндрической поверхности F(x,y)=0, ограниченной снизу поверхностью z=f1(x,y) и сверху – поверхностью z=f2(x,y), если:
F(x,y)=y2-4/9·(x-1)3, f1=0, f2=2-√x

Найти моменты инерции однородных дуг L плотности ρ
L={(x,y):x=acost, y=asint, 0≤t≤α }
а) Относительно оси OX
б) Относительно оси OY

Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
С помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4
Вычислить криволинейный интеграл первого рода по указанной кривой L
Найти статический момент части цилиндра, x2+y2=2Ry, лежащей между плоскостями z=0 и z=c, относительно плоскости XZ, если плотность ρ=y+z
Найти координаты центра масс дуги однородной кривой L
L={(x,y):x2/3+y2/3=a2/3,y≥0}

Задача 6. Изменить порядок интегрирования в двойном интеграле. Сделать чертёж области интегрирования.
Вариант 5