| Найти коэффициенты при a=x2·y·z6, b=x4·y·z, c=y2·z8 в разложении (3·x+5·y+2·z2)6. | Алфавит состоит из множества символов E={+,∗,0,1,f}. Определим количество таких трёхсимвольных слов в этом алфавите, которые не содержат повторяющихся букв.
 |
Найти минимальную тупиковую форму функции, используя карты Карно
 | Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 4·an+2 + 9·an+1 + 5·an = 0· и начальным условиям a1=1, a2=4. |
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна
 | Сети Петри. Структура и правила выполнения сетей Петри (Ответ на теоретический вопрос – 2 страницы Word) |
Записать множество A = {x|x ∈ Z∧x2 < 10} перечислением элементов.
 | Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 ⊆ AxB, P2 ⊆ B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,4),(c,3),(c,2),(c,4)}; P2 = {(2,1),(3,1),(3,2),(4,1),(4,3)}. |
Найдите значения следующих выражений Привести три самостоятельных примера применения оператора подстановки к простейшим числовым функциям
 | Используя определение равенства множеств и операции над множествами, проверить указанное равенство и проиллюстрировать решение с помощью диаграммы Эйлера-Венна.
 |