Артикул: 1121277

Раздел:Технические дисциплины (78365 шт.) >
  Математика (30168 шт.) >
  Дискретная математика (444 шт.)

Название или условие:
Построить контактные схемы по заданным функциям проводимости. Установить при каких наборах элементов, входящих в данную схему, она будет работоспособна.

Изображение предварительного просмотра:

Построить контактные схемы по заданным функциям проводимости. Установить при каких наборах элементов, входящих в данную схему, она будет работоспособна.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задано универсальное множество U и множества A, B, C, D . Найти результаты действий а)-д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = {2,4,6,8,10}
A = {2,4}; B = {4,6,8}; C = {2,6,10}, D = {4}

Найти минимальную тупиковую форму функции, используя карты Карно
Логическая функция задана номерами наборов аргументов, на которых она принимает значение единица. Найти: 1) СКНФ и СДНФ, 2) минимальную ДНФ двумя способами – методом Квайна-Мак-Класки и по карте Карно. Минимизировать с помощью карт Карно двоичную функцию от 4-х переменных, заданную своими значениями на наборах
Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.
Для булевой функции f(x, y, z) найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 4·an+2 + 9·an+1 + 5·an = 0· и начальным условиям a1=1, a2=4.Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 ⊆ AxB, P2 ⊆ B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,4),(c,3),(c,2),(c,4)}; P2 = {(2,1),(3,1),(3,2),(4,1),(4,3)}.
Алфавит состоит из множества символов E={+,∗,0,1,f}. Определим количество таких трёхсимвольных слов в этом алфавите, которые не содержат повторяющихся букв.
Для булевой функции f([, y,z) найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.