Артикул: 1115783

Раздел:Технические дисциплины (73569 шт.) >
  Математика (26636 шт.) >
  Дискретная математика (371 шт.) >
  Теория графов (76 шт.)

Название или условие:
Дано дерево из n вершин (n ≥ 3). Всегда ли в таком дереве найдется хотя бы одна вершина степени 2?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Дана матрица Sm. Необходимо: а) построить соответствующий ей не ориентируемый граф ,который имеет заданную матрицу Sm матрицей смежности, определить матрицу инциденции In, для построенного графа; б) построить орграф (ориентируемый граф), который имеет матрицу смежности Sm. Найдите матрицу инциденции In, для построенного орграфа.
По заданному графу:
1) С помощью алгоритма Дейкстры найти путь от вершины x0 до вершины z минимального веса. Вычислить вес пути.
2) Построить максимальный поток в сети. Найти величину максимального потока.

Найти метрические характеристики графа (рис.1) Матрица расстояний этого графа имеет вид (рис.2)
Решить систему методом Коутса:
Задача остовных деревьев в k–связном графе. (дипломная работа)Пользуясь алгоритмом Дейкстры, найти кратчайшие расстояния из вершины v1 неориентированного взвешенного графа в другие вершины графа. Указать кратчайший маршрут из вершины v1 в вершину v4 .
Покажем, что граф Петерсена (рис) не гамильтонов
По заданной колоде реконструируйте граф
Найти объединение и пересечение графов G1 и G2, дополнение для графа G2.
Орграф задан своей матрицей смежности.
Следует:
а) нарисовать орграф;
б) найти полустепени и степени вершин;
в) записать матрицу инцидентности.