Артикул: 1071955

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Дискретная математика (330 шт.) >
  Теория графов (68 шт.)

Название или условие:
Теория графов. (реферат)

Описание:
СОДЕРЖАНИЕ:

1. Введение
2. История возникновения теории графов3. Основные определения теории графов
4. Основные теоремы теории графов
5. Задачи на применение теории графов
6. Применение теории графов в школьном курсе математики
7. Приложение теории графов в различных областях науки и техники
8. Последние достижения теории графов
9. Вывод
Количество страниц - 18

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Дано дерево из n вершин (n ≥ 3). Всегда ли в таком дереве найдется хотя бы одна вершина степени 2?Пользуясь алгоритмом Дейкстры, найти кратчайшие расстояния из вершины v1 неориентированного взвешенного графа в другие вершины графа. Указать кратчайший маршрут из вершины v1 в вершину v4 .
В задачах 21-30 дан граф. Составить для данного графа структурную матрицу. Найти: а) все простые пути из вершины i в вершину j; б) совокупность всех сечений между вершинами i и j.
i=5, j=3.

Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).

Построить взвешенный (веса устанавливаются произвольно) ориентированный граф с 5-ю вершинами так, чтобы существовал эйлеров цикл. Найти кратчайшие маршруты, соединяющие все вершины.Найти метрические характеристики графа (рис.1) Матрица расстояний этого графа имеет вид (рис.2)
Найти матрицу фундаментальных циклов графа G, изображенного на рисунке
Решить систему методом Коутса:
Взвешенный граф G задан матрицей длин дуг. Нарисовать граф. Найти:
а) степенную последовательность графа G;
б) минимальное остовное дерево и его вес

Орграф задан своей матрицей смежности.
Следует:
а) нарисовать орграф;
б) найти полустепени и степени вершин;
в) записать матрицу инцидентности.