Артикул: 1115195

Раздел:Технические дисциплины (73078 шт.) >
  Математика (26224 шт.) >
  Математический анализ (18155 шт.) >
  Кратные и криволинейные интегралы (1278 шт.)

Название или условие:
Вычислить криволинейные интегралы:, где L - дуга кривой ρ = 2(1 + cosφ), 0 ≤ φ ≤ π/2

Изображение предварительного просмотра:

Вычислить криволинейные интегралы:, где L - дуга кривой ρ = 2(1 + cosφ), 0 ≤ φ ≤ π/2

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в слуычае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
Изобразите область D, которая ограничена кривыми заданными в задании. Вычислите двойной интеграл по области D.
Найти момент инерции прямого кругового цилиндра радиуса R и высотой H относительно оси Oz, если плотность ρ постояннаВычислить двойной интеграл, если область G ограничена осями координат и прямой y= 1- x . Интеграл:
Найти координаты центра масс дуги однородной кривой L
L={(x,y):x2/3+y2/3=a2/3,y≥0}

Вычислить интеграл:
S xyzdS,где S-часть конуса z2=2xy, z≥0, лежащая внутри цилиндра x2+y2=a2

Найти координаты центра масс части однородного конуса:
x2+y2=R2/H2 z2, 0≤z≤H

Вычислить двойной интеграл ∫∫D x/y·dx·dy , где D ограничена линиями y=ex, y=e2x, x=2.
Вычислить криволинейный интеграл первого рода по указанной кривой L
Изменить порядок интегрирования. Область интегрирования изобразить на чертеже