Артикул: 1115073

Раздел:Технические дисциплины (72975 шт.) >
  Математика (26150 шт.) >
  Математический анализ (18094 шт.) >
  Кратные и криволинейные интегралы (1273 шт.)

Название или условие:
Вычислить объем тела, ограниченного поверхностями
y = 0, z = 0, 3x + 2y = 6, z = x2

Описание:
Подробное решение

Изображение предварительного просмотра:

Вычислить объем тела, ограниченного поверхностями <br /> y = 0, z = 0, 3x + 2y = 6, z = x<sup>2</sup>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

С помощью тройного интеграла вычислить объем тела, ограниченного поверхностями: x2 + y2 = 2, x = √(y), z = 30y, x = 0, z = 0
Найти статический момент части цилиндра, x2+y2=2Ry, лежащей между плоскостями z=0 и z=c, относительно плоскости XZ, если плотность ρ=y+z
Вычислить двойной интеграл, если область G ограничена эллипсом (x2 + 4) + (y2/9) = 1 и осями координат. Интеграл:
Вычислить тройной интеграл, если область V ограничена поверхностями x =0, у=x, z=y, z=0
Вычислите двойной интеграл перейдя к полярным координатам. Изобразите область интегрирования
Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
Найти координаты центра масс части однородного конуса:
x2+y2=R2/H2 z2, 0≤z≤H

Вычислить криволинейный интеграл по контуру Г, пробегаемому в положительном направлении:
где Г - контур прямоугольника АВСD: А(-1; -1); В(-1; 2); С(3; 2); D(3; -1).

Найти момент сопротивления кручению стержня круглого сечения радиуса RС помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4