Артикул: 1114688

Раздел:Технические дисциплины (72611 шт.) >
  Математика (25893 шт.) >
  Математический анализ (17964 шт.) >
  Кратные и криволинейные интегралы (1255 шт.)

Название или условие:
Вычислить криволинейный интеграл, где LAB - дуга параболы y2 = 4 - 4x от точки А(1;0) до точки В (0;2)

Описание:
Подробное решение

Изображение предварительного просмотра:

Вычислить криволинейный интеграл, где L<sub>AB</sub> - дуга параболы y<sup>2</sup> = 4 - 4x от точки А(1;0) до точки В (0;2)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
Найти статический момент части цилиндра, x2+y2=2Ry, лежащей между плоскостями z=0 и z=c, относительно плоскости XZ, если плотность ρ=y+z
Вычислить интеграл:
S xyzdS,где S-часть конуса z2=2xy, z≥0, лежащая внутри цилиндра x2+y2=a2

Найти моменты инерции однородных дуг L плотности ρ
L={(x,y):x=acost, y=asint, 0≤t≤α }
а) Относительно оси OX
б) Относительно оси OY

Вычислить тройной интеграл по прямоугольной области
Вычислите двойной интеграл перейдя к полярным координатам. Изобразите область интегрирования
Представить двойной интеграл ∬Df(x;y)dxdy в виде суммы двукратных интегралов: а) внешний интеграл по y; б) внешний интеграл по x. n=3
Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
Задача 6. Изменить порядок интегрирования в двойном интеграле. Сделать чертёж области интегрирования.
Вариант 5

Вычислить двойной интеграл ∬Df(x;y)dxdy в случаях: а) прямоугольной области, заданной неравенствами; б) произвольной области, ограниченной линиями. f(x, y)=5x – y