Артикул: 1068800

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название или условие:
Вычислите ∫(6xy)dx-(x2-2y)dy от точки А(0,5) до точки В(2,3) по линии y=x+3

Изображение предварительного просмотра:

Вычислите ∫(6xy)dx-(x<sup>2</sup>-2y)dy от точки А(0,5) до точки В(2,3) по линии y=x+3

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
Вычислить
Вычислить двойной интеграл ∫∫D x/y·dx·dy , где D ограничена линиями y=ex, y=e2x, x=2.
Вычислить двойной интеграл, если область G ограничена эллипсом (x2 + 4) + (y2/9) = 1 и осями координат. Интеграл:
Вычислить тройной интеграл, если область V ограничена поверхностями x =0, у=x, z=y, z=0
Вычислите двойной интеграл перейдя к полярным координатам. Изобразите область интегрирования
Вычислить объем тела ограниченного сферой x2 + y2 + z2 = 4a2 и цилиндром x2+y2=a2 и расположенного вне цилиндраНайти координаты центра масс части однородного конуса:
x2+y2=R2/H2 z2, 0≤z≤H

Вычислить криволинейный интеграл первого рода по указанной кривой L
Вычислить двойной интеграл, если область G ограничена осями координат и прямой y= 1- x . Интеграл: