Артикул: 1058128

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название или условие:
Используя формулу Грина, вычислить криволинейный интеграл ∫(x3- 2y + x2 sin(x 3 + y3 )) dx + ( 2xy + y2sin(x3 + y3 )) dy, где L — окружность х2 + у2 = 2х, пробегаемая против хода часовой стрелки.

Описание:
Подробное решение

Изображение предварительного просмотра:

Используя формулу Грина, вычислить криволинейный интеграл ∫(x<sup>3</sup>- 2y + x<sup>2</sup> sin(x <sup>3</sup> + y<sup>3</sup> )) dx + ( 2xy + y<sup>2</sup>sin(x<sup>3</sup> + y<sup>3 </sup>)) dy, где L  — окружность х<sup>2</sup> + у<sup>2</sup> = 2х, пробегаемая против хода часовой стрелки.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить двойной интеграл ∫∫D x/y·dx·dy , где D ограничена линиями y=ex, y=e2x, x=2.
Найти статический момент части цилиндра, x2+y2=2Ry, лежащей между плоскостями z=0 и z=c, относительно плоскости XZ, если плотность ρ=y+z
Изобразите область D, которая ограничена кривыми заданными в задании. Вычислите двойной интеграл по области D.
Найти площадь цилиндрической поверхности F(x,y)=0, ограниченной снизу поверхностью z=f1(x,y) и сверху – поверхностью z=f2(x,y), если:
F(x,y)=y2-4/9·(x-1)3, f1=0, f2=2-√x

Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
Изменить порядок интегрирования. Область интегрирования изобразить на чертеже
Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
Вычислить двойной интеграл ∬Df(x;y)dxdy в случаях: а) прямоугольной области, заданной неравенствами; б) произвольной области, ограниченной линиями. f(x, y)=5x – y
Вычислить данные криволинейные интегралы
Вычислить криволинейный интеграл первого рода по указанной кривой L