С помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4
 | Вычислить криволинейный интеграл по контуру Г, пробегаемому в положительном направлении: где Г - контур прямоугольника АВСD: А(-1; -1); В(-1; 2); С(3; 2); D(3; -1).
 |
Вычислить, если А(0; -1), В(3; 3).
 | Найти координаты центра масс дуги однородной кривой L L={(x,y):x2/3+y2/3=a2/3,y≥0}
 |
Представить двойной интеграл ∬Df(x;y)dxdy в виде суммы двукратных интегралов: а) внешний интеграл по y; б) внешний интеграл по x. n=3
 | Вычислить двойной интеграл, если область G ограничена эллипсом (x2 + 4) + (y2/9) = 1 и осями координат. Интеграл:
 |
Вычислить двойной интеграл, если область G ограничена осями координат и прямой y= 1- x . Интеграл:
 | Вычислить криволинейный интеграл первого рода по указанной кривой L
 |
Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
 | Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
 |