Артикул: 1051912

Раздел:Технические дисциплины (57837 шт.) >
  Теоретические основы электротехники (ТОЭ) (5301 шт.) >
  Переходные процессы (657 шт.)

Название или условие:
Классический метод анализа переходных процессов.

Описание:
Ответ на теоретический вопрос - 3 страницы.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Ко входу параллельной RC-цепи подключен источник постоянного тока. Параметры элементов цепи: J = 3 мА, R = 2 кОм, C = 6 нФ. В нулевой момент времени источник отключается (заменяестя внутренним сопротивлением).
Составьте дифференциальное уравнение относительно напряжения на конденсаторе.
Определите начальное условие для решения дифференциального уравнения.
Вариант 28
Схема цепи приведена на рисунке. На входе цепи действует напряжение u(t)=Ue-βtσ(t). Выходным сигналом является напряжение на катушке L2. Найдите выходной сигнал двумя способам – операторным методом и используя интеграл Дюамеля. Считайте U, β, L1, L2 и R – известными величинами (L1=L2). Постройте, качественно, графики входного и выходного сигналов в одном масштабе.

По какому закону будут изменяться ток и напряжения на R, C и L при переключении ключа из положения a в положение b?
Указать неправильный ответ.

ЗАДАЧА 13. Определить ток в цепи (рис. 1) операторным методом и с помощью интеграла Дюамеля. Построить график i(t).
Вариант 20
Величины R и ωL (при ω = 314 1/с) указаны в таблице вариантов задачи 12. Дано: ωL=0,75 Ом; ωL/R=3;

Определить принужденную составляющую тока в ветви с индуктивным элементом, полагая e(t)=100 В; R1 = R4 = 10 Ом; R2 = R = 20 Ом; L = 0.05 Гн; C = 250 мкФ. Ключ замыкается.
ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЦЕПЯХ С СОСРЕДОТОЧЕННЫМИ ПАРАМЕТРАМИ
Цепь содержит источники постоянного напряжения и постоянного тока Е и J, а также источники гармонического напряжения e(t)=Emsin(ωt+φ) и тока J(t)=Jmsin(ωt+φ) c угловой частотой ω = 1000 рад/с.
Предполагается, что до замыкания (или размыкания) первого ключа цепь находится в установившемся режиме.
Необходимо:
1. Рассчитать классическим методом ток i1(t) на трех этапах, соответствующих последовательному замыканию (или размыканию) трех ключей.
2. Рассчитать тот же ток i1(t) операторным методом. Для первой и второй коммутации воспользоваться операторным методом для полных составляющих тока, для третьей коммутации применить операторный метод для свободной составляющей тока.
3. Построить график зависимости i(t) для трех этапов.
Вариант 8

Проанализировать схему. На основании анализа построить приближенно график U2(t)
Лабораторная работа №11
ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЦЕПЯХ ПЕРВОГО ПОРЯДКА

Цель работы. Исследование переходных процессов в цепях с конденсатором, характеризующихся дифференциальными уравнениями первого порядка.
Вариант 8

В простом параллельном колебательном контуре в начальный момент времени конденсатор заряжен до напряжения 5 В, ток через катушку индуктивности отсутствует. Определите начальные условия для решения дифференциального уравнения, описывающего процесс собственных колебаний в контуре и составленного относительно тока через конденсатор. Параметры колебательного контура: R = 80 кОм, L = 4 мГн, C = 1 нФ.Е = 10 В, L = 1 мГн.
R1 = 10 Ом, R2 = 10 Ом, R3 = 30 Ом,
Определить ic (поскольку конденсатор в задаче убран, будем определять ток источника)