Артикул: 1040589

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название или условие:
Тело Т ограничено поверхностями z = 4 - x2 - y2 (1), z = -√4 - x2 - y2 (2), y = 0 (3) при у ≤ 0.
1) Сделайте схематический рисунок тела Т.
2) С помощью тройного интеграла найдите объем тела Т.

Описание:
Подробное решение

Изображение предварительного просмотра:

Тело Т ограничено поверхностями z = 4 - x<sup>2</sup> - y<sup>2</sup> (1), z = -√4 - x<sup>2</sup> - y<sup>2</sup> (2), y = 0 (3) при у ≤ 0. <br />1) Сделайте схематический рисунок тела Т. <br />2) С помощью тройного интеграла найдите объем тела Т.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить тройной интеграл по прямоугольной области
Вычислить двойной интеграл, если область G – единичный круг с центром в начале координат. Интеграл:
Представить двойной интеграл ∬Df(x;y)dxdy в виде суммы двукратных интегралов: а) внешний интеграл по y; б) внешний интеграл по x. n=3
Задача 6. Изменить порядок интегрирования в двойном интеграле. Сделать чертёж области интегрирования.
Вариант 5

Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
Вычислить интеграл:
S xyzdS,где S-часть конуса z2=2xy, z≥0, лежащая внутри цилиндра x2+y2=a2

Вычислить двойной интеграл ∬Df(x;y)dxdy в случаях: а) прямоугольной области, заданной неравенствами; б) произвольной области, ограниченной линиями. f(x, y)=5x – y
Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
Вычислить криволинейный интеграл I рода, если L – отрезок прямой от точки А до точки В.
f(x;y)=x2y+2xy; A(0;0), B(3;6)

Найти координаты центра масс дуги однородной кривой L
L={(x,y):x2/3+y2/3=a2/3,y≥0}