Артикул: 1035794

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория поля (97 шт.)

Название или условие:
Найти циркуляцию вектора a = (x - yz)i + xj - zk по контуру Γ с помощью формулы Стокса и непосредственно (положительным направлением обхода контура считать то, при котором точка перемещается по часовой стрелке, если смотреть из начала координат).

Описание:
Подробное решение в WORD

Поисковые тэги: Формула Стокса

Изображение предварительного просмотра:

Найти циркуляцию вектора a = (x - yz)i + xj - zk по контуру Γ с помощью формулы Стокса и непосредственно (положительным направлением обхода контура считать то, при котором точка перемещается по часовой стрелке, если смотреть из начала координат).

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Дано скалярное поле u (x, y, z). Найти div(grad u)Скалярное поле образовано функцией
V = √(R2 - x2 - y2 - z2)
Найти поверхности уровни этого поля

Показать что поле вектора является потенциальным и найти его потенциал.
Найти циркуляцию вектора F = -ωyi + ωxj по окружности x = acos(t), y = asin(t) в положительном направлении
Найти поверхности уровня скалярного поля
υ = arctg(z/(√(x2 + y2)))

Найти циркуляцию векторного поля F = (x + 2y + 2z)i + (2x + z)j + (x - y)k по контуру треугольника MNP, где M(2;0;0), N(0;3;0), P(0;0;1)
Найти поток радиуса-вектора r = xi + yj + zk через внешнюю сторону поверхности прямого кругового цилиндра, если начало координат совпадает с центром нижнего основания цилиндра, R - радиус основания цилиндра, h - его высота
Найти производную скалярного поля U в точке А по направлению к точке В
U = y2 - 2xy + 3x2 - 3xz + 8, A(1,0,0), B(3,-1,1)

Показать, что поле F = (2xy + 3y2 + 9y)i + (x2 + 6xy + 9x)j является потенциальным, и найти потенциал этого поля
Найти поток векторного поля a через замкнутую поверхность σ.