Артикул: 1027005

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Вариационное исчисление и функциональный анализ (120 шт.)

Название:На поверхности цилиндра x2 + y2 = a2 найти кривую наименьшей длины, соединяющую точки (a,0,0) и (0,a,h) , и расстояние между этими точками, измеренное по поверхности цилиндра.

Описание:
Подробное решение - 2 страницы

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Дана модель объекта управления, описываемая системой дифференциальных уравнений и граничными условиями x1(0) = 0, x2(0) = 3, x1(3) = 2, x2(3) = –1, где t – время (t ∈ [0; 3]), x(t) = (x1(t), x2(t))T – фазовый вектор (траектория объекта), u(t) – функция управления объектом.
Требуется найти оптимальное управление объектом u*(t) и соответствующую ему оптимальную траекторию x*(t) , если задан критерий качества управления

Среди всех функций класса С(2) [0, π], удовлетворяющих граничным условиям y(0) = y(π) = 0, y'(0) = y'(π) = 1, найти такую, которая реализует экстремум функционала
Найти приращение функционала, если y(x) = x2, y1(x) = x3
Решить задачу с помощью уравнения Эйлера и условий трансверсальности
Исследовать на экстремум функционал
Найти экстремали следующего функционала (рис) удовлетворяющие условиям жесткого закрепления: x = (0) = 1/2,
Найти экстремаль функционала при заданных граничных условиях: y(1) = 0, y'(1) = 1, y(2) = y'(2) = 0
Найти вариацию функционала, если y(x) и δ(y(x)) ∈ C(1) [x0, x1]
Найти экстремали следующего функционала (рис) удовлетворяющие условиям: x(0) = x(π/2) = 1, y(0) = y(π/2) = -1
Найти экстремаль функционала