Задача 6. Изменить порядок интегрирования в двойном интеграле. Сделать чертёж области интегрирования. Вариант 5
 | Вычислить двойной интеграл ∬Df(x;y)dxdy в случаях: а) прямоугольной области, заданной неравенствами; б) произвольной области, ограниченной линиями. f(x, y)=5x – y
 |
Вычислить двойной интеграл, если область G – единичный круг с центром в начале координат. Интеграл:
 | Вычислить двойной интеграл ∫∫D x/y·dx·dy , где D ограничена линиями y=ex, y=e2x, x=2.
 |
Найти объем и массу тела Ω, если μ – его плотность
 | Вычислить криволинейный интеграл по контуру Г, пробегаемому в положительном направлении: где Г - контур прямоугольника АВСD: А(-1; -1); В(-1; 2); С(3; 2); D(3; -1).
 |
С помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4
 | Вычислить криволинейный интеграл II рода , если L – отрезок прямой, соединяющей точки А и В. L: A(0;0), B(3;6); y=3x
 |
Найти координаты центра масс дуги однородной кривой L L={(x,y):x2/3+y2/3=a2/3,y≥0}
 | Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
 |