Артикул: 1002376

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Аналитическая геометрия (1481 шт.)

Название или условие:
Составить уравнение прямой, проходящей через точки А(2; 3) и В(–3; 4)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Дано: AB=DC=|b|=1, BC=|a|=4, ABC=120°
Найти AC-? BD-?

В треугольнике KLM угол M - прямой, KL = 29, LM = 21. Найдите tg∠K
6)
Напишите уравнение плоскости, параллельной Ох и проходящей через точки М (2;2;0) и N (4;0;0).
Показать, что четырехугольник ABCD – ромб, если A(1;2;2), B(3;5;8), C(-3;2;6), D(-5;-1;0). Найти угол при вершине ромба.
Напишите уравнение плоскости, проходящей через точку М (2;2;-2) и параллельной прямой х-2у-3z=0.Найти вектор x , удовлетворяющий условиям
2. Составить уравнение геометрического места точек, каждая из которых находится вдвое дальше от точки A(3;0), чем от оси ординат.Установить, образуют ли векторы а1а2а3 базис в пространстве всех векторов, если:
Даны координаты вершин пирамиды A1A2A3A4. Средствами векторной алгебры найти:
1) угол между ребрами A1A2 и A1A4;
2) площадь грани A1A2A3;
3) проекцию вектора A1A3 на вектор A1A4;
4) объем пирамиды;
Вариант 7

Вычислить: