Артикул: 1001684

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Исследование функций (1370 шт.)

Название или условие:
Задача 3677 из сборника Демидовича. Определить наибольшие (sup) и наименьшие (inf) значения следующих функций в указанных областях.

Поисковые тэги: Сборник Демидовича, Функции нескольких переменных

Изображение предварительного просмотра:

Задача 3677 из сборника Демидовича. Определить наибольшие (sup) и наименьшие (inf) значения следующих функций в указанных областях.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти наибольшее и наименьшее значения функции f(x) = x3 - 3x на отрезке .
Построить график функции
Проверить, выполняется ли теорема Ролля для функции на отрезке [-1, 1].
Исследовать функцию f(x)=x2+6x-5 на экстремум
Учитывая, что функция f(x) = -x2+2x удовлетворяет условиям теоремы Лагранжа на промежутке [1, 3], найти точку c ∈ (1, 3), в которой
Исследовать данную функцию на условный экстремум при данных уравнениях связи.
z=a cos2⁡x+b cos2⁡y, y-x=π/4

Найдите общие решения линейного дифференциального уравнения ex(y+y’)=1.
Найти «нули» функции y=0,5·tg(3x) на промежутке [ -π; π/2] и записать их сумму
Построить график функции y=3ctg(x)
Исследовать функцию y = x+ 2 + (1/x) и построить ее график.