Артикул: 1000087

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название или условие:
Вычисление точечных статистических характеристик массива (выборочных среднего, дисперсии и среднего квадратического отклонения), ассиметрии и эксцесса. Решение в MathCad

Описание:
По своему содержанию контрольная работа предполагает:
-формирование и описание массива экспериментальных данных конкретного варианта (какие из имеющихся в массиве данных подвергаются обработке и анализу)
-вычисление точечных статистических характеристик массива (выборочных среднего, дисперсии и среднего квадратического отклонения), ассиметрии и эксцесса
-построение гистограмм плотности распределения и функции распределения массива экспериментальных данных
-построение доверительных интервалов для найденных статистических оценок с заданной доверительной вероятностью
-проверка гипотезы о законе распределения
Дано : Траловый флот в период 1990 годов
массив X3 – среднесуточный вылов рыбы одним судном определенного типа
массив Х8 – среднесуточное количество замороженной рыбы в тоннах для данного типа судов



Поисковые тэги: Теория вероятности и математическая статистика (ТВиМС)

Изображение предварительного просмотра:

Вычисление точечных статистических характеристик массива (выборочных среднего, дисперсии и среднего квадратического отклонения), ассиметрии и эксцесса. Решение в MathCad

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Закон распределения случайной величины X определяется (см. рис.)
Вычислить математическое ожидание и дисперсию случайной величины X, найти функцию распределения случайной величины Y, если Y=|X+1|.

Утверждается, что результат действия лекарства зависит от способа его применения. Проверить это утверждение при α = 0,05 по следующим данным:
Случайная величина X – цена на товар задана с помощью функции следующего вида:
Покупательский спрос на товар Y определяется формулой Y=25-3X. Найти среднее ожидаемое значение и дисперсию покупательского спроса на товар.

В первом ящике из 14 ламп 3 неисправны, во втором – из 10 ламп одна неисправная. Какова вероятность извлечь из наугад выбранного ящика исправную лампу?
В результате опыта получена выборочная совокупность.
1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов.
2. По сгруппированным данным построить:
а) полигон относительных частот;
б) гистограмму относительных частот;
в) график эмпирической функции распределения.
3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅В, выборочную дисперсию DВ, выборочное среднее квадратическое отклонение σВ и исправленную дисперсию S2.
4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности.
5. Проверить выполнения правила “трёх сигм”.
6. Применив критерий согласия Пирсона χ2 с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности.
7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ.
9. α=0,05; γ=0,95
Вариант 9

Среди поступающих на сборку деталей с первого автомата 0,1% брака, со второго – 0,2%, с третьего – 0,25%. Производительности их относятся как 5:3:3. Найти вероятность того, взятая наудачу деталь окажется бракованной.
Исследователями психологов установлено, что мужчины и женщины по-разному реагируют на некоторые жизненные обстоятельства. Результаты исследований показали, что 70% женщин позитивно реагируют на эти ситуации, в то время как 40% мужчин реагируют на них негативно. 20 женщин и 15 мужчин заполнили анкету, в которой отразили свое отношение к данной ситуации. Случайно извлеченная анкета содержит негативную реакцию. Чему равна вероятность того, что ее заполнял мужчина?Проверка функционирования устройства осуществляется специальным тестом. Если устройство функционирует правильно, то вероятность прохождения теста равна 0,99; в противном случае вероятность прохождения теста равна 0,40. Устройство допускается к работе, если тест проходит 5 раз подряд.
В предположении, что число прохождений теста подчиняется биномиальному распределению, ответить на следующие вопросы:
а) Какова область изменения и критическая область статистики критерия? Какое распределение имеет статистика критерия?
б) Как сформулировать нулевую гипотезу, если ошибка первого рода состоит в отклонении правильно функционирующего устройства?
в) Какова альтернативная гипотеза и в чем состоит ошибка второго рода?
г) Чему равны вероятности ошибок первого и второго рода?
В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобрано 2 человека. Дискретная случайная величина – число мужчин среди отобранных. Найти: ряд распределения, числовые характеристики, функцию распределения F(x). Построить график F(x).Дневная добыча угля в некоторой шахте распределена по нормальному закону с математическим ожиданием 785 т и стандартным отклонением 60 т. а) Найдите вероятность того, что в определенный день будут добыты, по крайней мере 800 т угля; б) Определите долю рабочих дней, в которые будет добыто от 750 до 850 т угля.