Артикул: 1000047

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название или условие:
Выборочные коэффициенты ранговой корреляции Спирмена и Кендалла. Решение в Excel.

Описание:
Три эксперта оценили инвестиционную привлекательность десяти компаний, в результате чего были получены три последовательности рангов (в первой строке приведены ранги эксперта А, во второй – ранги эксперта В, в третьей – ранги эксперта С). Определить, как согласуются оценки экспертов, используя выборочные коэффициенты ранговой корреляции Спирмена и Кендалла. Значимость коэффициентов корреляции проверить на уровне α=0,05.


Поисковые тэги: Теория вероятности и математическая статистика (ТВиМС)

Изображение предварительного просмотра:

Выборочные коэффициенты ранговой корреляции Спирмена и Кендалла. Решение в Excel.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задана непрерывная случайная величина Χ функцией распределения F(х). Требуется:
1) найти плотность распределения вероятностей f(x);
2) схематично построить графики функций f(x) и F(х);
3) найти математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины Х;
4) найти вероятность того, что Х примет значение из интервала (α;β).
Вариант 1

Даны результаты выборочных наблюдений случайной величины. Найти несмещенные оценки математического ожидания, дисперсии и среднего квадратического отклонения. Считая случайно величину нормально распределенной, с надежностью 0,95 найти интервальную оценку для ее математического ожидания при известном среднем квадратическом отклонении (σ=2) и при неизвестном среднем квадратическом отклонении
Вычислить вероятность того, что при бросании двух игральных костей сумма очков на верхних гранях будет равна 8, если известно, что разность меньше 3.Техническая система состоит из пяти узлов. Вероятность нарушения режима работы для каждого узла равна 0,2. Найти вероятность выхода из строя двух узлов системы; хотя бы одного узла; наивероятнейшее число узлов, не вышедших из строя
В урне лежит 7 шаров, из них 2 белых. Вынимают 4 шара. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратическое отклонение числа Х вынутых белых шаров. Построить график функции распределения ХВ цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобрано 2 человека. Дискретная случайная величина – число мужчин среди отобранных. Найти: ряд распределения, числовые характеристики, функцию распределения F(x). Построить график F(x).
Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча при каждом броске равны соответственно 0,8 и 0,6. Найти вероятность того, что у первого будет больше попаданий, чем у второго.Для приведенных группированных выборок, приняв 10 %-ный уровень значимости, проверить гипотезу Н0 о том, что они получены из нормально распределенной генеральной совокупности.
Из десяти билетов 4 выигрышных. Приобретается четыре билета. Какова вероятность того, что: хотя бы один из них невыигрышный; не менее трёх выигрышных; все выигрышные? В результате опыта получена выборочная совокупность.
1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов.
2. По сгруппированным данным построить:
а) полигон относительных частот;
б) гистограмму относительных частот;
в) график эмпирической функции распределения.
3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅В, выборочную дисперсию DВ, выборочное среднее квадратическое отклонение σВ и исправленную дисперсию S2.
4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности.
5. Проверить выполнения правила “трёх сигм”.
6. Применив критерий согласия Пирсона χ2 с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности.
7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ.
9. α=0,05; γ=0,95
Вариант 9