Артикул: 1116220

Раздел:Технические дисциплины (73963 шт.) >
  Математика (26975 шт.) >
  Теория вероятности (2753 шт.) >
  Теория массового обслуживания (ТМО-СМО) (70 шт.)

Название или условие:
Рассчитать характеристики системы массового обслуживания. Поток требований является простейшим (пуассоновским), а продолжительность обслуживания распределена по экспоненциальному закону.
Поток клиентов, прибывающих в банк, имеет интенсивность 9 клиентов в час. Продолжительность обслуживания одного клиента в среднем длится 8 мин. Сколько операционистов должно обслуживать клиентуру, чтобы среднее число клиентов, ожидающих обслуживания, не превышало 3?

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

В билетной кассе на железнодорожной станции работает 1 кассир. Поток клиентов – простейший с интенсивностью 10 человек в час. Время обслуживания – показательное со средним 5 мин. Определить характеристики обслуживания, если все клиенты становятся в очередь, длина которой не ограничена.На вход многоканальной СМО с отказами поступает поток заявок, интенсивность которого составляет 11 заявок/час. Среднее время обслуживания одной заявки 0,15 часа. Каждая заявка приносит доход 130 руб., а содержание одного канала обходится в 122 руб./час. Найти оптимальное число каналов СМО
На пункт техосмотра поступает простейший поток заявок (автомобилей) интенсивности λ=4 машины в час. Время осмотра распределено по показательному закону и равно в среднем 17 мин., в очереди может находиться не более 5 автомобилей. Определите вероятностные характеристики пункта техосмотра в установившемся режиме В парикмахерской работают 3 мастера. За 1 час в парикмахерскую приходят в среднем 10 человек. Среднее время обслуживания клиента каждым мастером - 20минут. Зал ожидания рассчитан на 4 места. Среднее время ожидания клиента в очереди tож -10минут. Найти характеристики СМО
В зубоврачебном кабинете три кресла, а в коридоре три стула для ожидания приема. Поток клиентов – простейший с интенсивностью 12 клиентов в час. Время обслуживания – показательное со средним 20 мин Если все стулья в коридоре заняты, то клиент не становится в очередь. Определить характеристики обслуживанияИмеется двухканальная система массового обслуживания с отказами. На ее вход поступает поток заявок с интенсивностью 4 заявки в час. Среднее время обслуживания одной заявки 0,8 ч. Каждая обслуженная заявка приносит доход с = 4 рубля. Содержание каждого канала обходится 2 рубля в час. Выяснить: выгодно или нет в экономическом отношении увеличить число каналов системы до 3.
Предположим, что в телефонном режиме на СКЦ в случайном порядке поступает в среднем 2 заявки за 10 минут. Определить поток вероятности p (t) i поступления в СКЦ в среднем 4 заявки за 30 минут. Интенсивность потока телефонных звонков в службу по вопросу поиска и спасения, имеющего один телефон, составляет 2N = 16 вызовов в час. Продолжительность принятия мер по заявке равна 0,3N = 2,4 минуты. Определить относительную и абсолютную пропускную способность этой системы массового обслуживания и вероятность отказа (занятости телефона). Сколько телефонов должно быть в службе, чтобы относительная пропускная способность была не менее 0,75.
Отрезок длины 35 поделен на две части длины 25 и 10 соответственно. Наудачу 6 точек последовательно бросают на отрезок. X – случайная величина, равная числу точек, попавших на отрезок длины 10. Найдите математическое ожидание и среднее квадратичное отклонение величины X. В вычислительном центре работает 5 персональных компьютеров (ПК). Простейший поток задач, поступающих на ВЦ, имеет интенсивность λ=10 задач в час. Среднее время решения задачи равно 12 мин. Заявка получает отказ, если все ПК заняты. Найдите вероятностные характеристики системы обслуживания (ВЦ).