Артикул: 1114728

Раздел:Технические дисциплины (72650 шт.) >
  Теоретическая механика (теормех, термех) (1826 шт.) >
  Динамика (344 шт.)

Название или условие:
Система, показанная на рисунках 1.1-1.5, состоит из следующих элементов. Грузы массами m1 и m2 движутся поступательно. К грузам прикреплены невесомые нерастяжимые нити, перекинутые или намотанные на блоки массами m3 и m4, которые могут без трения вращаться вокруг горизонтальных осей. Блок массой m3 – сплошной цилиндр, а блок массой m4 – ступенчатый цилиндр с радиусами ступеней r4 и R4 и одинаковой высотой (рисунок 1.6). При движении по блокам нити не проскальзывают, участки нитей для тел на наклонных плоскостях параллельны этим плоскостям, коэффициент трения тел о любую плоскость равен μ. Система начинает движение из состояния покоя. Считая, что все нити и участки плоскостей имеют достаточную длину, выполнить следующие задания:
1. Найти ускорения грузов массами m1 и m2 и угловые ускорения блоков ε3, ε4. Принять r3=r4.
2. Найти силы натяжения всех нитей.
3. Используя кинематические формулы, найти скорости грузов, угловые скорости блоков и пути, пройденные грузами спустя время τ после начала движения.
4. Используя закон изменения механической энергии, найти скорости грузов и угловые скорости блоков в тот момент, когда пути, пройденные грузами, составят значения, найдены в п. 3.
Вариант 16

Описание:
Подробное решение в WORD - 6 страниц

Изображение предварительного просмотра:

Система, показанная на рисунках 1.1-1.5, состоит из следующих элементов. Грузы массами m1 и m2 движутся поступательно. К грузам прикреплены невесомые нерастяжимые нити, перекинутые или намотанные на блоки массами m3 и m4, которые могут без трения вращаться вокруг горизонтальных осей. Блок массой m3 – сплошной цилиндр, а блок массой m4 – ступенчатый цилиндр с радиусами ступеней r4 и R4 и одинаковой высотой (рисунок 1.6). При движении по блокам нити не проскальзывают, участки нитей для тел на наклонных плоскостях параллельны этим плоскостям, коэффициент трения тел о любую плоскость равен μ. Система начинает движение из состояния покоя. Считая, что все нити и участки плоскостей имеют достаточную длину, выполнить следующие задания: <br />1.	Найти ускорения грузов массами m1 и m2 и угловые ускорения блоков ε3, ε4. Принять r3=r4. <br />2.	Найти силы натяжения всех нитей. <br />3.	Используя кинематические формулы, найти скорости грузов, угловые скорости блоков и пути, пройденные грузами спустя время τ после начала движения. <br />4.	Используя закон изменения механической энергии, найти скорости грузов и угловые скорости блоков в тот момент, когда пути, пройденные грузами, составят значения, найдены в п. 3.<br /> <b>Вариант 16</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задание Д-2
Тело H массой m1 вращается вокруг вертикальной оси z с постоянной угловой скоростью ω0; при этом в точке К желоба АВ тела Н на расстоянии АК от точки А, отсчитываемом вдоль желоба, находится материальная точка М массой m2. В некоторый момент времени (t=0) на систему начинает действовать пара сил с моментом Mz=Mz(t). При t=τ действие сил прекращается и начинается второй этап движения, в течение которого точка М начинает относительное движение из точки К вдоль желоба АВ (в направлении точке В) по закону МК=s(t1), где t1 –время движения на втором этапе. Определить угловую скорость ωт тела Н при t1=T. Тело Н рассматривать как однородную пластину форма которой показана на рис Д-2 либо как однородный стержень.
Дано: m1=80 кг; m2=20 кг; ω0=0; R=2 м; a=1,2 м; s=s(t)=(πa/4)∙t1; T=3с; M=240√t; AK=πa/4; τ=4с.

Задача Д1
Груз D массой m, получив в точке А начальную скорость υ0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 – Д1.9, табл. Д1). На участке АВ, на груз кроме силы тяжести, действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения); трением груза о трубу на участке АВ пренебречь.
В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него, кроме силы тяжести, действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние АВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. x = f(t), где x = BD
Вариант 75

Д3.
Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости(рис.1.3). Найти максимальное сжатие пружины hmax.
Вариант 1.
Дано: m=0.1кг, VA=12м/с, τ=0.2c, R=0.5м, f=0.05, c=0.9H/см=90H/м, α=30°, β=75°.
Определить: hmax-?

Задача Д1 Вариант 1
Груз М массой m=4,5кг, получив в точке А начальную скорость V0=18м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=9Н) и сила сопротивления среды R, зависящая от скорости v груза, R=0,45V; трением груза о трубу на этом участке пренебречь.
В точке В груз, изменив направление приобретенной скорости, но сохранив при этом ее величину, переходит на участок ВС трубы, где на него кроме силы тяжести действуют силы трения (коэффициент трения груза о трубу f = 0,2) и переменная по величине сила F, направленная вдоль участка ВС, проекция которой на ось Вх: Fx =3sin(2t).
Считая груз материальной точкой и зная время t1=5c движения груза от точки А до точки В, найти уравнение х=х(t) движения груза на участке ВС.

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 33

Задача Д2
4.2.1. Условия задачи. Механическая система (рис. 4.3) включает два ступенчатых шкива 1,2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментом М, приложенной к одному из шкивов.
Радиусы внешних ступеней шкивов R1 и R2, веса шкивов Р1, Р2 и грузов Р3, Р4, Р5, Р6, а также величина момента М для конкретных вариантов задачи приведены в табл. Д2. Радиусы внутренних ступеней шкивов ri = 0,5Ri (i = 1,2), радиусы инерции шкивов относительно осей вращения ρi = 0,6Ri.
Пренебрегая силами трения и считая нити нерастяжимыми, определить:
- линейные ускорения грузов;
- угловые ускорения шкивов;
- силы натяжения нитей на участках между грузами и шкивами.
Провести проверку и оценить погрешность решения с помощью уравнения движения шкива, к которому приложен момент М.
Вариант 789

Общие теоремы динамики материальной точки
Шарик массы т движется из положения А внутри изогнутой трубки, расположенной в вертикальной плоскости. Шарик, пройдя путь 1, отделяется от пружины. В точке В шарик, не меняя значения своей скорости, переходит на участок ВС, где на него дополнительно действует переменная сила F, направление которой указано на рисунке. Пользуясь общими теоремами динамики точки, определить скорость шарика в положениях В и С. В задании приняты следующие обозначения: 1 - начальная скорость шарика, АВ - длина участка, 7 - время движения на участке ВС, f - коэффициент трения скольжения шарика по стенке трубки, с коэффициент жесткости пружины.
Вариант 9

ЗАДАНИЕ Д2
Механическая система состоит из прямоугольной вертикальной плиты 1 массой m1 = 24 кг и груза D массой m2 = 8 кг; плита или движется вдоль горизонтальных направляющих, или вращается вокруг вертикальной оси z, лежащей в плоскости плиты. В момент времени t0 груз начианет двигаться под действием внутренних сил по имеющемуся на плите желобу; закон его движения s=AD=F(t) задан в таблице. Плита имеет в момент t0 = 0 скорость u0 = 0.
Считая груз материальной точкой и пренебрегая всеми сопротивлениями, определить указанное в столбцах 4 и 9 таблицы.
Вариант 34

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 88

Задание Д-3
Механическая система, изображенная на рис. Д-3, состоит из нескольких тел, соединенных нерастяжимыми и не провисающими нитями; при этом тела системы совершают либо поступательное движение (грузы), либо вращаются вокруг неподвижной горизонтальной оси (однородные диски либо соосные блоки, жестко насаженные на единую ось), либо совершают плоскопараллельное движение (однородные диски либо соосные блоки).
При выполнении задания необходимо:
1. Составить математическую модель для определения движений всех тел механической системы, а так же реакций внешних и внутренних связей в виде замкнутой системы дифференциальных и алгебраических уравнений.
2. Для указанного преподавателем тела получить дифференциальное уравнение движения.
3. Для указанного преподавателем тела получить дифференциальное уравнение движения, используя теорему об изменении кинетической энергии.
4. Решить полученное в пунктах 2 и 3 дифференциальное уравнение при заданных начальных условиях.
5. Получить математическую модель для анализа условий равновесия рассматриваемой механической системы.