Артикул: 1114466

Раздел:Технические дисциплины (72411 шт.) >
  Теоретическая механика (теормех, термех) (1820 шт.) >
  Динамика (341 шт.)

Название:Малые колебания в системе с двумя степенями свободы (Вариант 4 Схема 6)

Описание:
Подробное решение - 7 страниц

Изображение предварительного просмотра:

Малые колебания в системе с двумя степенями свободы (Вариант 4 Схема 6)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Дано: M = 100 Н·м, r1 = 0,2 м, r2 = 0,3 м, r3 = 0,4 м
Определить силу Q (задача Д-14, вариант 3)

Динамика материальной точки
Задана сила F =5υ/(sin(υ/6)) действующая на тело и его масса m = 14. Начальные условия: x = 0, υ0=6. Найти x при υ =12
Дано: d1 = 80 см, d2 = 25 см, Q = 5000 H, c = 100 Н/см, h = 4 см
Найти Р (задача Д-14, вариант 16)

Определение ускорения движения центра масс груза
Дано: α=30°; μ=0,2; R1 =0,05 м; R2 =0,22 м; M=26 Н∙м; m1=12 кг; m2=3 кг; m3=6 кг.
Каток 1 массой m1, на который намотан нерастяжимый канат, катится без скольжения по горизонтальной плоскости из состояния покоя под действием момента M пары сил и поднимает канатом, перекинутым через блок 2 массой m2, груз 3 массой m3 по наклонной плоскости, образующей угол α с горизонтом. Пренебрегая трением качения катка с плоскостью и проскальзыванием нити относительно блока и катка, найти ускорение движения центра масс груза. Принять, что каток и блок представляют собой сплошные однородные цилиндры радиусами R1 и R2, участок каната между катком и блоком горизонтальный и коэффициент трения скольжения при движении груза по плоскости равен μ.

Динамическое исследование движения системы с одной степенью свободы
1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение, служащее для определения зависимости s(t) координаты точки A от времени – дифференциальное уравнение движения системы.
2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в дифференциальной форме.
3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
4. Убедившись в совпадении результатов, полученных четырьмя независимыми способами, проинтегрировать дифференциальное уравнение движения системы, получив зависимость s(t) координаты точки A от времени.
5. Определить натяжения тросов в начальный момент времени (при t = 0).

Задача 4.2
К барабану лебедки (1) приложен момент M(t).Второй конец троса намотан на внутренний барабан колеса (2), которое катиттся без проскальзывания по наклонной плоскости. барабан лебедки - однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции I2 = m2·ρ22. Определить закон вращения лебедки φ(t). В начальный момент система была в покое. Задачу решить двумя способами:
A) С помощью фундаментальных законов (1) и (2)
B) С помощью теоремы об изменении кинетической энергии (3)
Вариант 10

Задание 9. Принцип Даламбера
Вертикальный вал, вращающийся с постоянной угловой скоростью ω=10 (1/с), закреплен подпятником в точке А и цилиндрическим подшипником в точке B.
AB=BD=DE=EK=b=0,4 м
К валу жестко прикреплены невесомый стержень 1 длиной l1=0,4 м с точечной массой m1=6 кг на конце и однородный стержень 2 длиной l2=0,6 м, имеющий массу m2=4 кг. Вал и оба стержня лежат в одной плоскости.
Точки крепления стержней к валу: В для стержня 1, Е для стержня 2.
α=75° β=120°
Пренебрегая весом вала, определить реакции связей.
Вариант АБВ = 342

Определить ускорение точки а, аА - ?
Дано: G1 = 8320 Н, G2 = 680 Н, G3 = 480 Н, r1 = 0.162 м, R2 = 0.396 м, r2 = 0.128 м, R3 = 0.265 м, r3 = 0.198 м, ρ2 = 0.276 м, α = 30°, k = 0.00005 м

Тело массой 1 кг падает вертикально вниз (сила сопротивления воздуха R = 0.03v2) с высоты H = 50 м. Какова будет его скорость, когда тело достигнет поверхности Земли?1) Определить закон движения x=x(t), где x — удлинение пружины ;
2) частоту k и период T колебаний.
Дано: P = 0.8 Н, Q = 0.5 Н, R = 0.5 м, С = 20 Н/см