Артикул: 1113120

Раздел:Технические дисциплины (71634 шт.) >
  Математика (25302 шт.) >
  Теория вероятности (2242 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1072 шт.)

Название:Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.
x = 75,12; n = 121; σ = 11

Изображение предварительного просмотра:

Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ. <br /> x = 75,12; n = 121; σ = 11

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.
x = 75,10; n = 169; σ = 13

Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=3, σ=2, α=3, β=10.

Дискретная случайная величина Х может принимать только два значения: х1 и х2, причем х1 меньше x2. Известны вероятность р1 возможного значения х1, математическое ожидание М(х) и дисперсия D(x). Найти закон распределения этой случайной величины.
p1=0,1; M(x)=3,9; D(x)=0,09

Два брата входят в состав двух спортивных команд, состоящих из 12 человек каждая. В двух урнах имеется по 12 билетов с номерами от 1 до 12. Члены кождой команды вынимают наудачу по одному билету из определённой урны (без возвращения). Найти вероятность того, что оба брата вытащат билет номер 6.
Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=4, σ=5, α=2, β=11.

Два студента договорились встретиться. Один ждет другого не более 10 минут. Найти вероятность того что студенты встретятся.
Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю X , объем выборки n и среднее квадратическое отклонение σ.
x = 75,14; n = 81; σ = 9

Процент отсева среди студентов первокурсников составляет 10 %. Найти вероятность того, что из 900 будет отчислено от 80 до 110 студентов (включительно)
Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит 5 раз.Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины x. Найти вероятность попадания этой величины в заданный интервал (α, β)
a=7, σ=2, α=3, β=10.