Артикул: 1113112

Раздел:Технические дисциплины (71634 шт.) >
  Математика (25302 шт.) >
  Теория вероятности (2242 шт.) >
  Теория массового обслуживания (ТМО-СМО) (58 шт.)

Название:Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага

Изображение предварительного просмотра:

Задана матрица Р<sub>1</sub> вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р<sub>2</sub> перехода из состояния i в состояние j за два шага

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага
Асимптотические методы исследования нестационарных режимов в сетях случайного доступа. (дипломная работа)
Дано: имеется n = 5-канальная СМО с m = 1 местом в очереди. На вход СМО поступают два простейших потока заявок I и II с интенсивностями λ1 = 2 и λ2 = 8. Времена обслуживания – показательные с параметрами μ1 = 5 и μ2 = 12.
Приоритет: заявка I, прибывшая в СМО, «вытесняет» заявку II, если она обслуживает-ся, при этом заявка II покидает СМО необслуженной. Если все каналы заняты обслу-живанием заявок I, то пришедшая заявка I занимает место в очереди перед заявками II, если таковые там есть. «Вытесненная» из очереди заявка II покидает СМО необслуженной.
Требуется:
1) Нумеруя состояния СМО двумя индексами i, j соответственно числу заявок I и II, находящихся в СМО, построить размеченный граф состояний СМО, составить и решить систему уравнений для финальных вероятностей состояний.
2) Найти следующие характеристики эффективности работы СМО: A(1), A(2), Q(1), Q(2), Pотк(1), Pотк(2), z(1), z(2), r(1), r(2), k(1), k(2), tсист(1), tсист(2), tоч(1), tоч
3. Сделать выводы
Учебная задача о справочном бюро.
В справочном бюро в среднем каждые 0,8 минуты раздаётся звонок.
Поиск информации и выдача справки в среднем занимает 1,5 минуты (tобсл.=1,5мин.).
Найти пропускную способность бюро и вероятность того, что очередной клиент услышит в ответ только короткие гудки, свидетельствующие о занятости единственной в бюро телефонной линии – не будет обслужен с первой попытки.
Цепь Маркова задана следующей диаграммой интенсивностей (рис)
1. Составить уравнение равновесия
2. Найти стационарное распределение вероятностей состояний системы
3. Определить среднее время возвращения в каждое состояние

Участок ремонта кузовов автомобилей состоит из двух рабочих мест. После восстановления кузова автомобили поступают в окрасочную камеру. Длины временных промежутков между поступлениями поврежденных автомобилей первой модели – случайные, равномерно распределенные величины на интервале [τ1, τ2], второй модели – случайные, равномерно распределенные величины на интервале [λ1, λ2]. Время пребывания автомобиля первой модели на кузовном ремонте – случайная равномерно распределенная величина на интервале [h1, h2], второй модели – случайная величина с экспоненциальным законом распределения со средним значением µ. Время окраски любого автомобиля – случайная величина, имеющая равномерное распределение на интервале [s1, s2]. Модели первого типа при обслуживании имеют более высокий приоритет.
В случае, если ремонтные места и покрасочная камера заняты, автомобили дожидаются обслуживания в очередях, длины которых не ограничены.
Цель. Разработать GPSS-модель функционирования ремонтных работ. Оценить отдельно для 1-й и 2-й модели среднее время, которое тратится на ремонт автомобиля (от момента поступления на ремонт до завершения окраски), среднее время ожидания в очередях.
Исходные данные:
τ1 = 0 ч, τ2 = 6 ч, λ1 = 0 ч, λ2 = 2 ч, h1 = 1 ч, h2 = 3 ч, µ = 3 ч, s1 = 10 мин, s2 = 12 мин.  
Классификация СМО и их основные элементы. Обслуживание с ожиданием. (курсовая работа)Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага
Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага
Задача о регулировке станков.
На токарном участке в цехе эксплуатируются шесть старых станков. Поэтому, в среднем через каждые полчаса каждые станок приходиться останавливать на отладку и регулировку, которая в среднем отнимает 10 минут «токарного» времени. Регулировку выполняет бригада из двух слесарей-наладчиков.
Полагая потоки событий в системе обслуживания станков пуассоновскими, найти:
- среднюю производительность бригады;
- среднее количество занятых регулировкой рабочих;
- среднее количество работающих станков;
- среднюю производительность участка.