Артикул: 1113112

Раздел:Технические дисциплины (71634 шт.) >
  Математика (25302 шт.) >
  Теория вероятности (2242 шт.) >
  Теория массового обслуживания (ТМО-СМО) (58 шт.)

Название или условие:
Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага

Изображение предварительного просмотра:

Задана матрица Р<sub>1</sub> вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р<sub>2</sub> перехода из состояния i в состояние j за два шага

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Прибор (сервер), обрабатывающей три сообщения в 1с. Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает в среднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления? Интенсивность потока телефонных звонков в службу по вопросу поиска и спасения, имеющего один телефон, составляет 2N = 16 вызовов в час. Продолжительность принятия мер по заявке равна 0,3N = 2,4 минуты. Определить относительную и абсолютную пропускную способность этой системы массового обслуживания и вероятность отказа (занятости телефона). Сколько телефонов должно быть в службе, чтобы относительная пропускная способность была не менее 0,75.
В билетной кассе работает один кассир, обслуживающий в среднем двух покупателей за одну минуту. Каждый час в среднем приходят покупать билеты 90 посетителей. Провести анализ работы СМОПять ткачих обслуживают 20 ткацких станков. Средняя продолжительность бесперебойной работы станка-30 минут, устранение неисправности (обрывания нити) занимает в среднем 1,5 минуты. Найти характеристики СМО
Автозаправочная станция (АЗС) представляет собой систему массового обслуживания с одним каналом. Площадка при станции допускает очередь не более 3 машин. Поток машин, прибывающих для заправки имеет интенсивность 1 машина в минуту. Процесс заправки продолжается 1,25 мин Найти характеристики системы, считая все потоки простейшими.В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, что деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы Р*обс>=0,95 (* — заданное значение Робс).
Предположим, что в телефонном режиме на СКЦ в случайном порядке поступает в среднем 2 заявки за 10 минут. Определить поток вероятности p (t) i поступления в СКЦ в среднем 4 заявки за 30 минут. В билетной кассе на железнодорожной станции работает 1 кассир. Поток клиентов – простейший с интенсивностью 10 человек в час. Время обслуживания – показательное со средним 5 мин. Определить характеристики обслуживания, если все клиенты становятся в очередь, длина которой не ограничена.
На промышленном предприятии решается вопрос о том, сколько потребуется механиков для работы в ремонтном цехе. Пусть предприятие имеет 10 машин, требующих ремонта с учетом числа ремонтирующихся. Отказы машин происходят с частотой λ=10 отк/час. Для устранения неисправности механику требуется в среднем t=3 мин. Распределение моментов возникновения отказов является пуассоновским, а продолжительность выполнения ремонтных работ распределена экспоненциально. Возможно организовать 4 или 6 рабочих мест в цехе для механиков предприятия. Необходимо выбрать наиболее эффективный вариант обеспечения ремонтного цеха рабочими местами для механиков. На склад в среднем прибывает 3 машины в час. Разгрузку осуществляют 3 бригады грузчиков. Среднее время разгрузки машины - 1 час. В очереди в ожидании разгрузки могут находиться не более 4-х машин. Дать оценку работы СМО.