Артикул: 1113112

Раздел:Технические дисциплины (71634 шт.) >
  Математика (25302 шт.) >
  Теория вероятности (2242 шт.) >
  Теория массового обслуживания (ТМО-СМО) (58 шт.)

Название:Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага

Изображение предварительного просмотра:

Задана матрица Р<sub>1</sub> вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р<sub>2</sub> перехода из состояния i в состояние j за два шага

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Анализ эффективности работы системы M/M/1 (лабораторная работа)
В учениях участвуют два корабля А и В, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль А поражает корабль В с вероятностью 0,6 а корабль В поражает корабль А с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятности переходов, если состояниями цепи Маркова являются комбинации: Е1 - оба корабля в строю, Е2 - в строю только корабль А, Е3 - в строю только корабль В, Е4 - оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Дано: имеется n = 5-канальная СМО с m = 1 местом в очереди. На вход СМО поступают два простейших потока заявок I и II с интенсивностями λ1 = 2 и λ2 = 8. Времена обслуживания – показательные с параметрами μ1 = 5 и μ2 = 12.
Приоритет: заявка I, прибывшая в СМО, «вытесняет» заявку II, если она обслуживает-ся, при этом заявка II покидает СМО необслуженной. Если все каналы заняты обслу-живанием заявок I, то пришедшая заявка I занимает место в очереди перед заявками II, если таковые там есть. «Вытесненная» из очереди заявка II покидает СМО необслуженной.
Требуется:
1) Нумеруя состояния СМО двумя индексами i, j соответственно числу заявок I и II, находящихся в СМО, построить размеченный граф состояний СМО, составить и решить систему уравнений для финальных вероятностей состояний.
2) Найти следующие характеристики эффективности работы СМО: A(1), A(2), Q(1), Q(2), Pотк(1), Pотк(2), z(1), z(2), r(1), r(2), k(1), k(2), tсист(1), tсист(2), tоч(1), tоч
3. Сделать выводы
Учебная задача о справочном бюро.
В справочном бюро в среднем каждые 0,8 минуты раздаётся звонок.
Поиск информации и выдача справки в среднем занимает 1,5 минуты (tобсл.=1,5мин.).
Найти пропускную способность бюро и вероятность того, что очередной клиент услышит в ответ только короткие гудки, свидетельствующие о занятости единственной в бюро телефонной линии – не будет обслужен с первой попытки.
Рассматривается установившийся режим работы Марковской СМО типа М/М/1/К. Интенсивность входного потока и интенсивность обслуживания λ = 1,5 μ = 2,85 соответственно K = 3
1/ Нарисовать диаграмму интенсивностей переходов
2. Найти среднее число требований в системе
3. Определить среднее число требований в очереди Nq
4. Определить сроеднее время обслуживания - х
Асимптотические методы исследования нестационарных режимов в сетях случайного доступа. (дипломная работа)
В операционном отделении банка с одинаковой интенсивностью работает l операторов. Известно среднее время обслуживания клиента оператором τ0 (в мин.). Наблюдения показали, что в два часа в среднем банк посещают S клиентов.
Проведите анализ работы операторов, рассчитав вероятность отсутствия работы для операторов; вероятность нахождения клиента в очереди, состоящей более чем из 3-х человек; среднее число клиентов, находящихся в очереди и на обслуживании, среднее число клиентов в очереди; среднее время пребывания клиента в очереди и на обслуживании; среднее время пребывания клиента в очереди. Предварительно определите оптимальное для Вашего варианта число операторов.
Данные: l = 2, τ = 3 мин, S = 60 человек

Задача о докерах.
В порт каждые сутки в среднем прибывает два сухогруза. Среднее время, в течение которого докеры «обрабатывают» судно, составляет 9 часов 36 минут. На внутреннем (защищённом от бурь) рейде имеется места для стоянки трёх ожидающих разгрузки судов. При полной занятости бухты, прибывающие вновь суда вынуждены ожидать очереди на внешнем рейде. Все потоки – простейшие.
Найти:
- относительную и
- абсолютную пропускную способность порта;
- среднее количество судов, ожидающих разгрузки;
- среднее время простоя судов на внешнем и внутреннем рейдах;
- среднее время пребывания судна в порту и вероятность (для прибывающего сухогруза) провести часть ожидания вне бухты.
Среднее число отказов радиоаппаратуры за 10 000 часов работы равно 10. Определить вероятность отказа радиоаппаратуры за 100 часов работы.Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага