Артикул: 1107232

Раздел:Технические дисциплины (69660 шт.) >
  Теоретическая механика (теормех, термех) (1787 шт.) >
  Динамика (330 шт.)

Название:Задание 9. Принцип Даламбера
Вертикальный вал, вращающийся с постоянной угловой скоростью ω=10 (1/с), закреплен подпятником в точке А и цилиндрическим подшипником в точке B.
AB=BD=DE=EK=b=0,4 м
К валу жестко прикреплены невесомый стержень 1 длиной l1=0,4 м с точечной массой m1=6 кг на конце и однородный стержень 2 длиной l2=0,6 м, имеющий массу m2=4 кг. Вал и оба стержня лежат в одной плоскости.
Точки крепления стержней к валу: В для стержня 1, Е для стержня 2.
α=75° β=120°
Пренебрегая весом вала, определить реакции связей.
Вариант АБВ = 342

Описание:
1.Выбор исходных данных. Нанесение внешних сил на схему.
2. Принцип Даламбера. Нанесение на схему сил инерции. Нанесение на схему реакций опор.
3. Составление уравнений равновесия. Нахождение реакций опор.
4.Выводы.

Подробное решение в WORD - 3 страницы

Изображение предварительного просмотра:

<b>Задание 9. Принцип Даламбера</b><br />Вертикальный вал, вращающийся с постоянной угловой скоростью ω=10 (1/с), закреплен подпятником в точке А и цилиндрическим подшипником в точке B.  <br />AB=BD=DE=EK=b=0,4 м <br />К валу жестко прикреплены невесомый стержень 1 длиной l1=0,4 м с точечной массой m1=6 кг на конце и однородный стержень 2 длиной l2=0,6 м, имеющий массу m2=4 кг. Вал и оба стержня лежат в одной плоскости. <br />Точки крепления стержней к валу: В для стержня 1, Е для стержня 2. <br />α=75° β=120° <br />Пренебрегая весом вала, определить реакции связей.<br /> Вариант АБВ = 342

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задача 4.2
К барабану лебедки (1) приложен момент M(t).Второй конец троса намотан на внутренний барабан колеса (2), которое катиттся без проскальзывания по наклонной плоскости. барабан лебедки - однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции I2 = m2·ρ22. Определить закон вращения лебедки φ(t). В начальный момент система была в покое. Задачу решить двумя способами:
A) С помощью фундаментальных законов (1) и (2)
B) С помощью теоремы об изменении кинетической энергии (3)
Вариант 1

Тело массой 0.3 кг брошено вертикально вверх со скоростью v0 = 8м/с. Сопротивление воздуха пропорционально квадрату скорости, и его модуль R = kv2. Какова максимальная высота подъема, если k = 0,2
Задача 4.2
К барабану лебедки (1) приложен момент M(t).Второй конец троса намотан на внутренний барабан колеса (2), которое катиттся без проскальзывания по наклонной плоскости. барабан лебедки - однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции I2 = m2·ρ22. Определить закон вращения лебедки φ(t). В начальный момент система была в покое. Задачу решить двумя способами:
A) С помощью фундаментальных законов (1) и (2)
B) С помощью теоремы об изменении кинетической энергии (3)
Вариант 10

Дано: P1 = 15 см, P2 = 40 см, P3 = 20 см, OA = 100 см, Q = 2·103 H, h = 4 см.
Найти: С
(задача Д-14, вариант 10)

Дано: O1Д = 60 см, АО = 20 см, М = 100 Н·м.
Найти Р
(задача Д-14, вариант 12)

Малые колебания в системе с двумя степенями свободы (Вариант 4 Схема 6)
Задача – Применение теоремы об изменении кинетической энергии к исследованию движения механической системы
Механическая система состоит из катков, ступенчатых щкивов и груза. Катки следует считать сплошыми однородными дисками, ступенчатые шкивы имеют радиусы ступеней R и r и радиусы инерции относительно оси вращения ρ. Тела системы соединены друг с другом нерастядимыми нитями; участки нитей параллельны соответсвующим плоскостями. К одному из тел приложен постоянный момент сопротивления Мс. Все катки катятся по плоскости без скольжения. Исследовать движение механической системы, если известные величичны ланы в таблице 3.2, а искомые величины в таблице 3.3, где Р1, Р2, Р3 – веса тел;
T (v1) - кинетическая энергия системы, выраженная через скорость тела 1;
A(S1), A(h1) - сумма работ всех сил, выраженная через перемещение тела 1;
A(φ1) - сумма работ всех сил, выраженная через угловое перемещение тела 1;
a1- ускорение центра масс тела;
ω1 - угловое ускорение тела 1;
L1,2(v1) - кинетический момент тел 1-2, выраженный через скорость тела 1;
FAB - натяжение нити на участке АВ;
X1, Y1 - проекция сил реакций оси тела 1 на оси координат;
Fтр3 - сила трения между телом 3 и поверхностью.

Дано: Р = 200 Н, h = 0,04 м, ОС/ОА = 4/5. Применяя принцип возможных перемещений и пренебрегая силами сопротивления, определить коэффициент жесткости пружины
(задача Д-14, вариант 4)

1) Определить закон движения x=x(t), где x — удлинение пружины ;
2) частоту k и период T колебаний.
Дано: P = 0.8 Н, Q = 0.5 Н, R = 0.5 м, С = 20 Н/см

Задача 4.2 (вариант 3)
Динамика плоского движения
К барабану лебедки (1) приложен момент M(t). Второй конец троса намотан на внутренний барабан колеса (2), которое катится без проскальзывания по наклонной плоскости. Барабан лебедки – однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции J2 = m2ρ22. Определить закон вращения лебедки φ2(t). В начальный момент система была в покое. Задачу решить двумя способами:
А) С помощью фундаментальных законов (1) и (2)
В) С помощью теоремы об изменении кинетической энергии (3)
Дано: m1= 4.0 кг, m2 = 4.0 кг, R1 = 0.3 м, R2 = 0.3 м, r2 = 0.2 м, ρ = 0.25 м, α = 30°, М = 3-0.2t Н·м
Найти: φ2=φ2(t)