Артикул: 1091666

Раздел:Технические дисциплины (62997 шт.) >
  Теоретическая механика (теормех, термех) (1753 шт.) >
  Динамика (323 шт.)

Название:Дано: α = 30°, P ≠ 0, l = 40 м, VA = 0 м/с, VB = 4,5 м/c, d = 3 м. Определить τ и h
(задача Д-1, вариант 11)

Изображение предварительного просмотра:

Дано: α = 30°, P ≠ 0, l = 40 м, V<sub>A</sub> = 0 м/с, V<sub>B</sub> = 4,5 м/c, d = 3 м. Определить τ и h <br /> (задача Д-1, вариант 11)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Дано: OC = 2·OA = 100 cм, Р = 200 Н, М = 50 Н·м, С = 50 Н/см, механизм расположен в горизонтальной плоскости
Определить: h - деформацию пружины (задача Д-14, вариант 23)

Дано: VA = 0, α = 30°, f = 0,2, h = 4.5 м, l = 6 м. Найти: τ и VC.
(задача Д-1, вариант 25)

Дано: OA = AB = AC = 50 cм, Q = 50 H, P = 100 H.
Найти M (задача Д-14, вариант 20)

Дано: f = 0,25, l = 4 м, h = 5 м, d = 3 м. Найти: τ и VA. (задача Д-1, вариант 30)
Дифференциальные уравнения движения точки. Решение задач динамики точки. (реферат)Дано: P1 = 15 см, P2 = 40 см, P3 = 20 см, OA = 100 см, Q = 2·103 H, h = 4 см.
Найти: С
(задача Д-14, вариант 10)

Дано: d1 = 80 см, d2 = 25 см, Q = 5000 H, c = 100 Н/см, h = 4 см
Найти Р (задача Д-14, вариант 16)

Дано: OВ = АВ, С = 180 Н/см, h = 2 см
Найти Р
(задача Д-14, вариант 27)

Задача 4.2
К барабану лебедки (1) приложен момент M(t).Второй конец троса намотан на внутренний барабан колеса (2), которое катиттся без проскальзывания по наклонной плоскости. барабан лебедки - однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции I2 = m2·ρ22. Определить закон вращения лебедки φ(t). В начальный момент система была в покое. Задачу решить двумя способами:
A) С помощью фундаментальных законов (1) и (2)
B) С помощью теоремы об изменении кинетической энергии (3)
Вариант 1

Применение теоремы об изменении кинетической энергии к изучению движения механической системы.
Механическая система под действием сил тяжести приходит в движение из состояния покоя; начальное положение системы показано на рис. 1. Учитывая трение скольжения тела 1, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
В задании приняты следующие обозначения: m1, m2, m3, m4 – массы тел 1, 2, 3, 4; β - угол наклона плоскости к горизонту; f – коэффициент трения скольжения.
Необходимые для решения данные приведены в таблице 1. Блоки и катки считать сплошными однородными цилиндрами. Наклонные участки нитей параллельны соответствующим наклонным плоскостям. (задача Д - 10, вариант 1)