Артикул: 1061397

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название или условие:
Фабрика выпускает пряжу двух видов: П1 и П2. Продукция поступает в оптовую продажу. Для производства используется три вида сырья – шерсть, капрон и акрил. Максимально возможные суточные запасы этих материалов составляют 6, 8 и 5 тонн соответственно. Расходы сырья на партию пряжи и оптовые цены приведены в таблице. Изучение рынка сбыта показало, что суточный спрос на пряжу П2 никогда не превышает спроса на пряжу П1 более чем на одну партию. Кроме того, установлено, что спрос на пряжу П2 никогда не превышает 2 партий.
Какое количество пряжи (в партиях) каждого вида должна произ-водить фабрика, что бы доход от реализации продукции был максимальным?

Описание:
Подробное решение в WORD - 3 страницы

Изображение предварительного просмотра:

Фабрика выпускает пряжу двух видов: П1 и П2. Продукция поступает в оптовую продажу. Для производства используется три вида сырья – шерсть, капрон и акрил. Максимально возможные суточные запасы этих материалов составляют 6, 8 и 5 тонн соответственно. Расходы сырья на партию пряжи и оптовые цены приведены в таблице. Изучение рынка сбыта показало, что суточный спрос на пряжу П2 никогда не превышает спроса на пряжу П1 более чем на одну партию. Кроме того, установлено, что спрос на пряжу П2 никогда не превышает 2 партий. <br />Какое количество пряжи (в партиях) каждого вида должна произ-водить фабрика, что бы доход от реализации продукции был максимальным?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Решить графически данную задачу линейного программирования
Найти полуплоскость, определяемую неравенством
2x1 + 3x2 - 12 ≤ 0

Максимизировать линейную форму L = 4x5 + 2x6 при ограничениях: x1 + x5 + x6 = 12, x2 + 5x5 - x6 = 30, x3 + x5 - 2x6 = 6, 2x4 + 3x5 - 2x6 = 18, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥0
Максимизировать линейную форму L = 2x1 + 2x2 при ограничениях: 3x1 - 2x2 ≥ - 6, 3x1 + x2 ≥ 3, x1 ≤ 3
Для изготовления 2-х видов продукции P1 и P2 используется 3 вида ресурсов R1, R2, R3. Запасы ресурсов, нормы их использования и прибыль от реализации единицы продукции приведены в таблице. Найти план производства продукции, которой бы при заданных условиях обеспечивал наибольшую прибыль.
Задачу решить графическим способом и симплексным методом, составить двойственную задачу к исходной и выписать ее оптимальный план из последней симплекс-таблицы решенной исходной задачи.

Симплекс-метод (реферат)
Максимизировать линейную форму L = 2x1 - x4 при следующей системе ограничений
Задача линейного программирования
Решить задачу многокритериальной оптимизации методом ограничений

Задана система ограничений: x1 + x2 + 2x3 - x4 = 3, x2 + 2x4 = 1 и линейная форма L = 5x1 - x3 . Найти оптимальное решение, минимизирующее линейную форму
Найти оптимальный план транспортной задачи