Артикул: 1061116

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название или условие:
Известна матрица В, элемент bij которой – объем i-го продукта, потребляемого при производстве j-го продукта в модели Леонтьева; известен валовой продукт x.
Найти:
1. Матрицу прямых затрат;
2. Матрицу полных затрат, объяснить смысл столбцов матрицы полных затрат;
3. Найти валовой продукт, необходимый для производства заданного конечного продукта y0; определить самую затратную отрасль при производстве y0
Данные: (рис)

Описание:
Подробное решение в WORD - 4 страницы

Изображение предварительного просмотра:

Известна матрица В, элемент b<sub>ij</sub>  которой – объем i-го продукта, потребляемого при производстве j-го продукта в модели Леонтьева; известен валовой продукт  x.  <br />Найти: <br />1. Матрицу прямых затрат; <br />2. Матрицу полных затрат, объяснить смысл столбцов матрицы полных затрат;  <br />3. Найти валовой продукт, необходимый для производства заданного конечного продукта  y<sub>0</sub>; определить самую затратную отрасль при производстве  y<sub>0</sub> <br />Данные: (рис)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Решить графически данную задачу линейного программирования
Симплекс-метод (реферат)
Найти наибольшее значение функции L = x1 + 3x2 + 3x3 при значениях: x2 + x3 ≤ 3, x1 - x2 ≥ 0, x2 ≥ 1, 3x1 + x2 ≤ 15
Компания, занимающаяся ремонтом автомобильных дорог, в следующем месяце будет проводить ремонтные работы на пяти участках автодорог. Песок на участки ремонтных работ может доставляться из трех карьеров, месячные объемы предложений по карьерам известны. Из планов производства ремонтных работ известны месячные объемы потребностей по участкам работ. Имеются экономические оценки транспортных затрат (в у. е.) на перевозку 1 тонны песка с карьеров на ремонтные участки.
Числовые данные для решения содержатся ниже в Матрице планирования.
Требуется:
1) Предложить план перевозок песка на участки ремонта автодорог, который обеспечивает минимальные совокупные транспортные издержки.
2) Что произойдет с оптимальным планом, если изменятся условия перевозок: а) появится запрет на перевозки от первого карьера до второго участка работ?; б) по этой коммуникации будет ограничен объем перевозок 3 тоннами?

Решить задачу о назначениях по данной матрице стоимостей
Найти оптимальный план транспортной задачи
Найти наибольшее значение функции L = 3x1 - 6x2 + 2x3 при ограничениях: 3x1 + 3x2 + 2x3 ≤ 6, x1 + 4x2 + 8x3 ≤ 8
Дать геометрическую интерпретацию следующих взаимно двойственных задач:
Исходная задача (I): найти неотрицательные значения (x1, x2) из условий x1 + 2x2 ≥ 4, x1 - x2 ≥ - 1 и минимизации линейной функции L = 3x1 + 2x2
Двойственная задача (I'): найти неотрицательные значения (y1, y2) из условий y1 + y2 ≤ 3, 2y1 - y2 ≤ 2 и максимизации линейной функции T = 4y1 - y2
Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4.
Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Найти полуплоскость, определяемую неравенством
2x1 + 3x2 - 12 ≤ 0