Артикул: 1054767

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название:Курсовая работа по Динамике
Вариант 10

Описание:
Методика выполнения курсовой работы
1. Определить направление движения системы тел 1 и 2 относительно призмы 3. для этого составить уравнения равновесия тел 1, 2, блока А и В. Из этих уравнений определить силы натяжения нитей и по сумме моментов этих сил относительно оси вращения одного из блоков А или В определить вращение этого блока. Для катящегося без скольжения катка уравнение условного равновесия составлять в виде суммы моментов относительно точки его соприкосновения с поверхностью призмы 3.
2. Определив, в каком направлении будут перемещаться тела 1 и 2, составить уравнения кинематических связей, то есть уравнения, связывающие между собой относительные линейны скорости и центров масса тел 1 и 2 системы угловые скорости блоков А и В, а также катка 1 или 2, совершающего плоскопараллельное движение. Обозначить относительное перемещение тела 1 как , найти через него, используя уравнения кинематических связей.
3. Расположив на горизонтальной поверхности упор, ограничивающий перемещение тела 3, написать теорему о движения центра масс системы в проекция на ось Ох. Далее определить горизонтальную реакцию этого упора, выразив ее как функцию ускорения тела 1.
4. В данном пункте и во всех последующих считать призму 3 относительно неподвижным основанием. Движение всех остальных тел по призме рассматривать происходящим при действии их сил тяжестей, а также силы F и момента М. Выполнить предварительный условно статический расчет по аналогии с п.1.
5. Составить дифференциальные уравнения движения каждого из тел системы. Все угловые и линейные ускорения в дифференциальных уравнениях выразить через ускорение центра масс тела 1. Из совместного решения дифференциальных уравнений найти ускорение , силы натяжения каждого из участков нити, силу трения сцепления катка 1( или 2), а по ней коэффициент трения.
6. Найти скорость как функцию перемещения и ускорение центра масс тела 1 с помощью теоремы об изменении кинетической энергии механической системы.
7. Найти ускорение центра масс тела с помощью общего уравнения динамики.
8. Найти ускорение центра масс тела 1 с помощью уравнения Лагранжа 2-ого рода.

Схема механической системы 2
Методика выполнения курсовой работы 2
1 Предварительный расчет I 5
2 Теорема о движении центра масс 8
3 Теорема о движении центра масс 12
4 Предварительный расчет II 14
5 Дифференциальные уравнения движения 16
6 Теорема об изменении кинетической энергии механической системы 20
7 Общее уравнение динамики 22
8 Уравнение Лагранжа 2-го рода 24
Список литературы 27

Всего 28 страниц

Изображение предварительного просмотра:

Курсовая работа по Динамике<br /> Вариант 10

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Система, показанная на рисунках 1.1-1.5, состоит из следующих элементов. Грузы массами m1 и m2 движутся поступательно. К грузам прикреплены невесомые нерастяжимые нити, перекинутые или намотанные на блоки массами m3 и m4, которые могут без трения вращаться вокруг горизонтальных осей. Блок массой m3 – сплошной цилиндр, а блок массой m4 – ступенчатый цилиндр с радиусами ступеней r4 и R4 и одинаковой высотой (рисунок 1.6). При движении по блокам нити не проскальзывают, участки нитей для тел на наклонных плоскостях параллельны этим плоскостям, коэффициент трения тел о любую плоскость равен μ. Система начинает движение из состояния покоя. Считая, что все нити и участки плоскостей имеют достаточную длину, выполнить следующие задания:
1. Найти ускорения грузов массами m1 и m2 и угловые ускорения блоков ε3, ε4. Принять r3=r4.
2. Найти силы натяжения всех нитей.
3. Используя кинематические формулы, найти скорости грузов, угловые скорости блоков и пути, пройденные грузами спустя время τ после начала движения.
4. Используя закон изменения механической энергии, найти скорости грузов и угловые скорости блоков в тот момент, когда пути, пройденные грузами, составят значения, найдены в п. 3.
Вариант 20

Дано: M = 100 Н·м, r1 = 0,2 м, r2 = 0,3 м, r3 = 0,4 м
Определить силу Q (задача Д-14, вариант 3)

Динамическое исследование движения системы с одной степенью свободы
1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение, служащее для определения зависимости s(t) координаты точки A от времени – дифференциальное уравнение движения системы.
2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в дифференциальной форме.
3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
4. Убедившись в совпадении результатов, полученных четырьмя независимыми способами, проинтегрировать дифференциальное уравнение движения системы, получив зависимость s(t) координаты точки A от времени.
5. Определить натяжения тросов в начальный момент времени (при t = 0).

1) Определить закон движения x=x(t), где x — удлинение пружины ;
2) частоту k и период T колебаний.
Дано: P = 0.8 Н, Q = 0.5 Н, R = 0.5 м, С = 20 Н/см

Тело массой 1 кг падает вертикально вниз (сила сопротивления воздуха R = 0.03v2) с высоты H = 50 м. Какова будет его скорость, когда тело достигнет поверхности Земли?Тело массой 0.3 кг брошено вертикально вверх со скоростью v0 = 8м/с. Сопротивление воздуха пропорционально квадрату скорости, и его модуль R = kv2. Какова максимальная высота подъема, если k = 0,2
Задача 4.2 (вариант 3)
Динамика плоского движения
К барабану лебедки (1) приложен момент M(t). Второй конец троса намотан на внутренний барабан колеса (2), которое катится без проскальзывания по наклонной плоскости. Барабан лебедки – однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции J2 = m2ρ22. Определить закон вращения лебедки φ2(t). В начальный момент система была в покое. Задачу решить двумя способами:
А) С помощью фундаментальных законов (1) и (2)
В) С помощью теоремы об изменении кинетической энергии (3)
Дано: m1= 4.0 кг, m2 = 4.0 кг, R1 = 0.3 м, R2 = 0.3 м, r2 = 0.2 м, ρ = 0.25 м, α = 30°, М = 3-0.2t Н·м
Найти: φ2=φ2(t)

Дифференциальные уравнения движения точки. Решение задач динамики точки. (реферат)
Динамика материальной точки
Задана сила F =5υ/(sin(υ/6)) действующая на тело и его масса m = 14. Начальные условия: x = 0, υ0=6. Найти x при υ =12
Малые колебания в системе с двумя степенями свободы (Вариант 4 Схема 6)