Артикул: 1050592

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория массового обслуживания (ТМО-СМО) (54 шт.)

Название или условие:
Древний вычислительный комплекс (типа БЭСМ).
Возможные состояния:
S1 – комплекс исправен и эксплуатируется;
S2 – комплекс отказал, неисправность локализуется;
S3 – комплекс ремонтируется;
S4 – комплекс отремонтирован, загружается, тестируется, готовится к эксплуатации.
Найти предельные вероятности состояний жизненного цикла древнего вычислительного комплекса.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Интенсивность потока посетителей столовой составляет 150 человек в час. Имеется 3 кассира, каждый из которых обслуживает в среднем 1 посетителя за минуту. Найти характеристики СМООдноканальная СМО с отказами представляет собой одну телефонную линию. Заявка (вызов), пришедшая в момент, когда линия занята, получает отказ. Все потоки событий простейшие. Интенсивность потока λ=0,95 вызова в минуту. Средняя продолжительность разговора t=1 мин. Определите вероятностные характеристики СМО в установившемся режиме работы. Сколько телефонов должно работать параллельно, чтобы вероятность отказа была меньше 1/10?
На склад в среднем прибывает 3 машины в час. Разгрузку осуществляют 3 бригады грузчиков. Среднее время разгрузки машины - 1 час. В очереди в ожидании разгрузки могут находиться не более 4-х машин. Дать оценку работы СМО. На пункт техосмотра поступает простейший поток заявок (автомобилей) интенсивности λ=4 машины в час. Время осмотра распределено по показательному закону и равно в среднем 17 мин., в очереди может находиться не более 5 автомобилей. Определите вероятностные характеристики пункта техосмотра в установившемся режиме
На телефонную станцию поступает случайный поток вызовов; вероятность приема к вызовов за время t равна pk(t) (к = 0,1, 2, ...). Число вызовов, принятых за промежуток времени t, не зависит от того, сколько вызовов поступило до или после этого промежутка. Найти вероятность того, что за промежуток времени 2t будет s вызовов.В вычислительном центре работает 5 персональных компьютеров (ПК). Простейший поток задач, поступающих на ВЦ, имеет интенсивность λ=10 задач в час. Среднее время решения задачи равно 12 мин. Заявка получает отказ, если все ПК заняты. Найдите вероятностные характеристики системы обслуживания (ВЦ).
Магазин посещает в среднем 90 человек в час. Имеющийся один кассир обслуживает в среднем одного покупателя в минуту. Очередь в зал обслуживания ограничена 5 покупателями. Оценить эффективность работы СМО. Одноканальная система массового обслуживания с отказами – телефонная линия. Интенсивность потока вызовов λ = 0,7 (вызовов в минуту). Средняя продолжительность разговора МТобс = 1,4 мин. Все потоки – простейшие. Требуется определить предельные (при t →∞ ) абсолютную и относительную пропускную способность, а также вероятность отказа
На автозаправочной станции 1 колонка. Площадка при станции допускает пребывание в очереди двух машин; если она занята, то прибывшая к станции машина проезжает мимо. Поток машин, прибывающих для заправки, имеет интенсивность 0,2 (машин в минуту). Процесс заправки продолжается в среднем 10 минут. Определить вероятность отказа.В зубоврачебном кабинете три кресла, а в коридоре три стула для ожидания приема. Поток клиентов – простейший с интенсивностью 12 клиентов в час. Время обслуживания – показательное со средним 20 мин Если все стулья в коридоре заняты, то клиент не становится в очередь. Определить характеристики обслуживания