Артикул: 1049486

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория массового обслуживания (ТМО-СМО) (54 шт.)

Название:В помещение, оборудованное общественным многофункциональным принтером, с интервалом времени 10±5 мин заходят студенты, желающие распечатать результаты лабораторной работы. В помещении для этого предназначен всего один принтер. Время, необходимое для печати, характеризуется интервалом 10±5 мин. Третья часть пользователей после окончания печати производит сканирование и запись другого документа на внешний носитель (продолжительность этой операции – 5±3 мин). В помещении не допускается присутствие более 10 человек.
Смоделировать процесс обслуживания 2000 пользователей. Подсчитать число пользователей, не нашедших свободного места в очереди. Определить среднее число пользователей в очереди, а также коэффициент загрузки принтера.

Описание:
Введение 3
1. Цель 5
2. Постановка задачи 6
3. Этапы проектирования модели 7
3.1. Описание концептуальной модели 7
3.2. Алгоритмизация модели и ее машинная реализация 8
3.3. Временная диаграмма 12
4. Выводы по результатам моделирования 14
Заключение 15



Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

К пункту мойки автомашин, рассчитанному на одну автомашину, подъезжает в среднем 5 машин в час. Процесс мойки одной автомашины занимает в среднем 15 минут. Рядом с пунктом мойки расположена площадка для ожидающих мойки автомашин, вмещающая 3 автомашины. Если площадка занята, то приезжающие для мойки автомашины уезжают в другие пункты мойки. Определить показатели эффективности этой СМОАвтозаправочная станция с тремя колонками обслуживает поток машин с интенсивностью 1 машина в минуту. Среднее время обслуживания одной машины 2 мин В данном районе нет другой АЗС, так что очередь машин у АЗС может расти практически неограниченно. Найти характеристики системы.
Найти оптимальное число телефонных номеров на предприятии, если заявки на переговоры поступают с интенсивностью 1,2 заявки в минуту, а средняя продолжительность разговора по телефону составляет tобс = 2 минуты. Найти также вероятность того, что в СМО за 3 минуты поступит: а) точно 2 заявки, б) не более 2-х заявок. На пункт техосмотра поступает простейший поток заявок (автомобилей) интенсивности λ=4 машины в час. Время осмотра распределено по показательному закону и равно в среднем 17 мин., в очереди может находиться не более 5 автомобилей. Определите вероятностные характеристики пункта техосмотра в установившемся режиме
Автозаправочная станция (АЗС) представляет собой систему массового обслуживания с одним каналом. Площадка при станции допускает очередь не более 3 машин. Поток машин, прибывающих для заправки имеет интенсивность 1 машина в минуту. Процесс заправки продолжается 1,25 мин Найти характеристики системы, считая все потоки простейшими.В билетной кассе работает один кассир, обслуживающий в среднем двух покупателей за одну минуту. Каждый час в среднем приходят покупать билеты 90 посетителей. Провести анализ работы СМО
На вход многоканальной СМО с отказами поступает поток заявок, интенсивность которого составляет 11 заявок/час. Среднее время обслуживания одной заявки 0,15 часа. Каждая заявка приносит доход 130 руб., а содержание одного канала обходится в 122 руб./час. Найти оптимальное число каналов СМООдноканальная система массового обслуживания с отказами – телефонная линия. Интенсивность потока вызовов λ = 0,7 (вызовов в минуту). Средняя продолжительность разговора МТобс = 1,4 мин. Все потоки – простейшие. Требуется определить предельные (при t →∞ ) абсолютную и относительную пропускную способность, а также вероятность отказа
На промышленном предприятии решается вопрос о том, сколько потребуется механиков для работы в ремонтном цехе. Пусть предприятие имеет 10 машин, требующих ремонта с учетом числа ремонтирующихся. Отказы машин происходят с частотой λ=10 отк/час. Для устранения неисправности механику требуется в среднем t=3 мин. Распределение моментов возникновения отказов является пуассоновским, а продолжительность выполнения ремонтных работ распределена экспоненциально. Возможно организовать 4 или 6 рабочих мест в цехе для механиков предприятия. Необходимо выбрать наиболее эффективный вариант обеспечения ремонтного цеха рабочими местами для механиков. На телефонную станцию поступает случайный поток вызовов; вероятность приема к вызовов за время t равна pk(t) (к = 0,1, 2, ...). Число вызовов, принятых за промежуток времени t, не зависит от того, сколько вызовов поступило до или после этого промежутка. Найти вероятность того, что за промежуток времени 2t будет s вызовов.