Артикул: 1049485

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория массового обслуживания (ТМО-СМО) (54 шт.)

Название или условие:
Участок ремонта кузовов автомобилей состоит из двух рабочих мест. После восстановления кузова автомобили поступают в окрасочную камеру. Длины временных промежутков между поступлениями поврежденных автомобилей первой модели – случайные, равномерно распределенные величины на интервале [τ1, τ2], второй модели – случайные, равномерно распределенные величины на интервале [λ1, λ2]. Время пребывания автомобиля первой модели на кузовном ремонте – случайная равномерно распределенная величина на интервале [h1, h2], второй модели – случайная величина с экспоненциальным законом распределения со средним значением µ. Время окраски любого автомобиля – случайная величина, имеющая равномерное распределение на интервале [s1, s2]. Модели первого типа при обслуживании имеют более высокий приоритет.
В случае, если ремонтные места и покрасочная камера заняты, автомобили дожидаются обслуживания в очередях, длины которых не ограничены.
Цель. Разработать GPSS-модель функционирования ремонтных работ. Оценить отдельно для 1-й и 2-й модели среднее время, которое тратится на ремонт автомобиля (от момента поступления на ремонт до завершения окраски), среднее время ожидания в очередях.
Исходные данные:
τ1 = 0 ч, τ2 = 6 ч, λ1 = 0 ч, λ2 = 2 ч, h1 = 1 ч, h2 = 3 ч, µ = 3 ч, s1 = 10 мин, s2 = 12 мин.  

Описание:
Введение 3
Задание 4
Описание концептуальной модели 5
Описание алгоритма решения данной задачи в среде GPSS 7
Исследование результатов 10
Выводы по результатам моделирования 13
Заключение 14
Список использованных источников 15
Листинг программы и результатов моделирования 16



Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Прибор (сервер), обрабатывающей три сообщения в 1с. Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает в среднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления?Одноканальная система массового обслуживания с отказами – телефонная линия. Интенсивность потока вызовов λ = 0,7 (вызовов в минуту). Средняя продолжительность разговора МТобс = 1,4 мин. Все потоки – простейшие. Требуется определить предельные (при t →∞ ) абсолютную и относительную пропускную способность, а также вероятность отказа
Магазин посещает в среднем 90 человек в час. Имеющийся один кассир обслуживает в среднем одного покупателя в минуту. Очередь в зал обслуживания ограничена 5 покупателями. Оценить эффективность работы СМО. Отрезок длины 35 поделен на две части длины 25 и 10 соответственно. Наудачу 6 точек последовательно бросают на отрезок. X – случайная величина, равная числу точек, попавших на отрезок длины 10. Найдите математическое ожидание и среднее квадратичное отклонение величины X.
Предположим, что в телефонном режиме на СКЦ в случайном порядке поступает в среднем 2 заявки за 10 минут. Определить поток вероятности p (t) i поступления в СКЦ в среднем 4 заявки за 30 минут. В СКЦ в среднем поступает 12 заявок в час. Считая поток заказов простейшим, определить вероятность того, что: а) за 1 минуту не поступит ни одного заказа, б) за 10 минут поступит не более трех заказов.
Одноканальная СМО с отказами представляет собой одну телефонную линию. Заявка (вызов), пришедшая в момент, когда линия занята, получает отказ. Все потоки событий простейшие. Интенсивность потока λ=0,95 вызова в минуту. Средняя продолжительность разговора t=1 мин. Определите вероятностные характеристики СМО в установившемся режиме работы. Сколько телефонов должно работать параллельно, чтобы вероятность отказа была меньше 1/10? На пункт техосмотра поступает простейший поток заявок (автомобилей) интенсивности λ=4 машины в час. Время осмотра распределено по показательному закону и равно в среднем 17 мин., в очереди может находиться не более 5 автомобилей. Определите вероятностные характеристики пункта техосмотра в установившемся режиме
В парикмахерской работают 3 мастера. За 1 час в парикмахерскую приходят в среднем 10 человек. Среднее время обслуживания клиента каждым мастером - 20минут. Зал ожидания рассчитан на 4 места. Среднее время ожидания клиента в очереди tож -10минут. Найти характеристики СМОАвтозаправочная станция (АЗС) представляет собой систему массового обслуживания с одним каналом. Площадка при станции допускает очередь не более 3 машин. Поток машин, прибывающих для заправки имеет интенсивность 1 машина в минуту. Процесс заправки продолжается 1,25 мин Найти характеристики системы, считая все потоки простейшими.