Артикул: 1039749
Раздел:Технические дисциплины (57837 шт.) >
Математика (23376 шт.) >
Теория вероятности (2126 шт.) >
Теория вероятности и математическая статистика (ТВиМС) (1013 шт.) Название или условие:Курсовая работа по математической статистике
Описание:I. Теоретическая часть
Для указанного закона распределения требуется:
– указать способ моделирования выборки из распределения случайной величины ζ с приведённым в задании распределением из выборки из стандартного равномерного распределения R[0,1] ;
– найти функцию распределения случайной величины ζ;
– найти математическое ожидание и дисперсию случайной величины ζ;
– найти оценки неизвестного параметра ϴ методом моментов (ϴ1) и методом максимального правдоподобия (ϴ2) . Выяснить, являются ли полученные оценки несмещёнными и состоятельными. Если оценки смещены, то найти несмещённые оценки, зависящие от оценок ϴ1 и ϴ2. Найти дисперсии несмещённых оценок (если оценки существуют);
– выяснить, существуют ли параметрические функции τ(ϴ), для которых можно найти эффективные оценки. Определить класс таких параметрических функций и вид эффективной оценки;
– найти оптимальную оценку ϴ3 неизвестного параметра ϴ (если она существует);
– для неизвестного параметра ϴ построить доверительный интервал уровня γ (значение γ приведено в задании);
– для непрерывных распределений – построить критерий Неймана-Пирсона для проверки двух простых параметрических гипотез: H
0: ϴ=ϴ
0, H1: ϴ=ϴ
0+1
(ϴ
0 – указанное в задании значение параметра ϴ). Вероятность ошибки первого рода положить равной α = 0.2 . Найти вероятность ошибки второго рода β.
– для дискретных распределений – построить критерий согласия хи-квадрат для проверки гипотезы о том, что истинным параметром распределения является ϴ
0. Уровень значимости критерия положить равным α = 0.01.
II. Работа на компьютере
1. Смоделировать выборку объёма 200 из заданного закона распределения для заданного значения параметра ϴ
0. Построить вариационный ряд выборки и эмпирическую функцию распределения F(x) .
2. По смоделированной в п. 1 выборке найти численные значения оценок ϴ1, ϴ2 и ϴ3.
3. Построить доверительный интервал для параметра ϴ доверительного уровня γ, значение которого указано в задании.
4. Смоделировать 10 выборок объёмом 100 каждая. Для каждой выборки найти численные значения оценок ϴ1, ϴ2 и ϴ3, а также численные значения границ доверительного интервала уровня γ. Найти значения выборочных средних и выборочных дисперсий полученных оценок.
5. Проверить гипотезу о том, что смоделированная выборка получена из указанного в задании закона распределения, применив критерий согласия хи-квадрат. Уровень значимости критерия положить равным .
α = 0.01
Подробное решение в WORD - 8 страниц
Изображение предварительного просмотра:
Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к
администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.