Артикул: 1037086

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория массового обслуживания (ТМО-СМО) (54 шт.)

Название или условие:
Задана матрица Р1 вероятностей перехода дискретной цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Распределение вероятностей по состояниям в момент t=0 определяется вектором q
. Найти:
1) матрицу Р2 перехода из состояния i в состояние j за два шага;
2) распределение вероятностей по состояниям в момент t=2;
3) вероятность того, что в момент t=1 состоянием цепи будет i=2;
4) стационарное распределение.

Описание:
Подробное решение

Изображение предварительного просмотра:

Задана матрица Р<sub>1</sub> вероятностей перехода дискретной цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Распределение вероятностей по состояниям в момент t=0 определяется вектором q <br />. Найти: <br />1) матрицу Р<sub>2</sub> перехода из состояния i в состояние j за два шага; <br />2) распределение вероятностей по состояниям в момент t=2; <br />3) вероятность того, что в момент t=1 состоянием цепи будет i=2; <br />4) стационарное распределение.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти оптимальное число телефонных номеров на предприятии, если заявки на переговоры поступают с интенсивностью 1,2 заявки в минуту, а средняя продолжительность разговора по телефону составляет tобс = 2 минуты. Найти также вероятность того, что в СМО за 3 минуты поступит: а) точно 2 заявки, б) не более 2-х заявок. В СКЦ в среднем поступает 12 заявок в час. Считая поток заказов простейшим, определить вероятность того, что: а) за 1 минуту не поступит ни одного заказа, б) за 10 минут поступит не более трех заказов.
Прибор (сервер), обрабатывающей три сообщения в 1с. Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает в среднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления?Автозаправочная станция с тремя колонками обслуживает поток машин с интенсивностью 1 машина в минуту. Среднее время обслуживания одной машины 2 мин В данном районе нет другой АЗС, так что очередь машин у АЗС может расти практически неограниченно. Найти характеристики системы.
На промышленном предприятии решается вопрос о том, сколько потребуется механиков для работы в ремонтном цехе. Пусть предприятие имеет 10 машин, требующих ремонта с учетом числа ремонтирующихся. Отказы машин происходят с частотой λ=10 отк/час. Для устранения неисправности механику требуется в среднем t=3 мин. Распределение моментов возникновения отказов является пуассоновским, а продолжительность выполнения ремонтных работ распределена экспоненциально. Возможно организовать 4 или 6 рабочих мест в цехе для механиков предприятия. Необходимо выбрать наиболее эффективный вариант обеспечения ремонтного цеха рабочими местами для механиков. В билетной кассе работает один кассир, обслуживающий в среднем двух покупателей за одну минуту. Каждый час в среднем приходят покупать билеты 90 посетителей. Провести анализ работы СМО
Интенсивность потока телефонных звонков в службу по вопросу поиска и спасения, имеющего один телефон, составляет 2N = 16 вызовов в час. Продолжительность принятия мер по заявке равна 0,3N = 2,4 минуты. Определить относительную и абсолютную пропускную способность этой системы массового обслуживания и вероятность отказа (занятости телефона). Сколько телефонов должно быть в службе, чтобы относительная пропускная способность была не менее 0,75.В билетной кассе на железнодорожной станции работает 1 кассир. Поток клиентов – простейший с интенсивностью 10 человек в час. Время обслуживания – показательное со средним 5 мин. Определить характеристики обслуживания, если все клиенты становятся в очередь, длина которой не ограничена.
На автозаправочной станции 1 колонка. Площадка при станции допускает пребывание в очереди двух машин; если она занята, то прибывшая к станции машина проезжает мимо. Поток машин, прибывающих для заправки, имеет интенсивность 0,2 (машин в минуту). Процесс заправки продолжается в среднем 10 минут. Определить вероятность отказа.Предположим, что в телефонном режиме на СКЦ в случайном порядке поступает в среднем 2 заявки за 10 минут. Определить поток вероятности p (t) i поступления в СКЦ в среднем 4 заявки за 30 минут.