Артикул: 1035625

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название:Составить задачу, двойственную следующей задаче: F = −x1 + 2x2 →max при ограничениях (рис)

Описание:
Подробное решение

Изображение предварительного просмотра:

Составить задачу, двойственную следующей задаче: F = −x<sub>1</sub> + 2x<sub>2</sub> →max  при ограничениях (рис)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти наименьшее значение линейной функции L = 7x1 + 5x2 на множестве неотрицательных решений системы уравнений
Дать геометрическую интерпретацию следующих взаимно двойственных задач:
Исходная задача (I): найти неотрицательные значения (x1, x2) из условий x1 + 2x2 ≥ 4, x1 - x2 ≥ - 1 и минимизации линейной функции L = 3x1 + 2x2
Двойственная задача (I'): найти неотрицательные значения (y1, y2) из условий y1 + y2 ≤ 3, 2y1 - y2 ≤ 2 и максимизации линейной функции T = 4y1 - y2
Совхоз для кормления животных использует два вида корма. В дневном рационе животного должно содержаться не менее 6 единиц питательного вещества и не менее 12 единиц питательного вещества . Какое количество корма надо расходовать ежедневно на одного животного, чтобы затраты были минимальными? Использовать данные таблицы
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум и почему

Решить задачу о назначениях по данной матрице стоимостей
Найти наибольшее значение функции L = 3x1 - 6x2 + 2x3 при ограничениях: 3x1 + 3x2 + 2x3 ≤ 6, x1 + 4x2 + 8x3 ≤ 8
В обработку поступили две партии досок для изготовления комплектов из трех деталей (треугольные каркасы настилов на стройплощадку), причем первая партия содержит 52 доски длиной по 6,5 м каждая, вторая содержит 200 досок длиной по 4 м каждая. Каждый комплект состоит из двух деталей по 2 м каждая и одной детали в 1,25 м.
Ставится задача поиска рационального варианта раскроя поступившего в обработку материала.
Решение военно-логической задачи по распределению ударной группы авиационного подразделения
В авиационном подразделении имеется 40 вертолетов. Планируется удар полковым вылетом по 3-м групповым целям: скоплению танков, двум дивизионам самоходной артиллерии и подразделению мотопехоты на бронетранспортерах. Необходимо найти оптимальный вариант распределения вертолетов по объектам удара и оценить его эффективность по математическому ожиданию поражаемой силы, выраженной в единицах боевого потенциала.
Боевой потенциал ударной группы приведен в табл. 1. Боевые потенциалы групповых целей приведены в табл. 2.

Задана система ограничений: x1 + x2 + 2x3 - x4 = 3, x2 + 2x4 = 1 и линейная форма L = 5x1 - x3 . Найти оптимальное решение, минимизирующее линейную форму
Фирма производит товар двух видов в количествах x и y. Задана функция полных издержек C(x,y). Цены этих товаров на рынке равны P1 и P2. Определить, при каких объемах выпуска достигается максимальная прибыль, найти эту прибыль.
C(x,y) = 7x2 + 8xy + 3y2 + 90, P1 = 110, P2 = 70

Максимизировать линейную форму L = 2x1 + 2x2 при ограничениях: 3x1 - 2x2 ≥ - 6, 3x1 + x2 ≥ 3, x1 ≤ 3